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Constrained Minimization

In this lecture, we will focus on minimizing an objective function subject to constraints.
There are numerous ways to introduce constraints; we will focus on the so-called functional
form, in which the constraints are level sets of functions. The general constrained optimiza-
tion problem we will consider is

min
x∈Rn

f(x) s.t.

{
gi(x) ≤ 0 : i = 1, . . . ,m
hj(x) = 0 : j = 1, . . . , k.

“s.t.” is spelled out as “subject to”; the set of constraints gi(x) ≤ 0 is called inequality
constraints, while the set hj(x) = 0 is called equality constraints. We will concentrate mainly
on the former case, since every h(x) = 0 can be translated into two inequality constraints of
the form h(x) ≤ 0 and −h(x) ≤ 0.

The set of points in Rn satisfying all constraints is called the feasible set, and a point
in it is called a feasible point. If at a solution point x∗ an inequality constraints is satisfied
with equality gi(x

∗) = 0, it is said to be active; if the inequality is strict, gi(x
∗) < 0, the

constraint is said to be inactive. Equality constraints are, obviously, always active. A point
for which all inequality constraints are passive is said strictly feasible (geometrically, it is a
point in the interior of the feasible set).

1 Optimality conditions

For unconstrained minimization problems, we have seen the necessary first-order optimality
condition ∇f(x∗) = 0. This is no longer true, in general, for constrained problems, as the
unconstrained minimizer might be an infeasible point. If only one constraint g(x) is active,
the constrained minimizer will be a point on a level line of f(x) that is tangent to the level
line of the constraint g(x) = 0. Geometrically, this means that at the constrained minimizer
x∗, the gradients of f and g are collinear, which can be expressed as

∇f(x∗) + λ∇g(x∗) = 0.

Furthermore, the gradient of the objective indicating an increase direction has to point to
the interior of the feasible set; on the other hand, the gradient of the constraint always
points in the opposite direction. This means that λ ≥ 0. In a more general case, when
several constraints are active, ∇f(x∗) is collinear with a positive linear combination of the
∇gi(x∗)’s.

In case there are equality constraints, we can write each of them as two inequality con-
straint hj(x) ≤ 0 and −hj(x) ≤ 0; since both are active, the linear combination of the
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gradients λ1∇hj(x∗)−λ2∇hj(x∗) can be simply written as λ∇hj(x∗) without non-negativity
restrictions on λ.

We can summarize these observations as the following theorem:

Theorem 1 (Karush-Kuhn-Tucker first-order necessary conditions). Let x∗ be a regular
constrained minimizer (regular means that the gradients of the active constraints are linearly
independent). Then, there exist λ∗ ∈ Rm

+ and µ∗ ∈ Rk such that

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +
k∑
j=1

µ∗i∇hj(x∗) = 0,

where
m∑
i=1

λ∗i gi(x) = 0.

The last condition is equivalent to saying that λ∗i = 0 for inactive constraints (for which
gi(x) < 0). This condition is usually known as complementary slackness (we defer the
explanation of this name).

The KKT conditions are sufficient of the objective f(x) is convex, the inequality con-
straints are C1 and convex, and the equality constraints are affine. Otherwise, more compli-
cated second-order sufficient conditions have to be used.

An equivalent form to write the KKT conditions is by constructing the Lagrangian func-
tion

L(x,λ,µ) = f(x) +
m∑
i=1

λigi(x) +
k∑
j=1

µihj(x) = f(x) + λTg(x) + µTh(x)

The condition
∇xL(x∗,λ∗,µ∗) = 0

is equivalent to the first order KKT condition.

2 Penalty methods

Focusing on problems with inequality constraints, observe that there is a trivial way to
convert them into unconstrained problems, by aggregating to the objective function a penalty
function taking the value of 0 inside the feasible set and∞ otherwise. This can be expressed
as

min
x∈Rn

F (x) ≡ f(x) +
m∑
i=1

ϕideal(gi(x)),

where

ϕideal(t) =

{
0 : t ≤ 0
∞ : t > 0.
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The function F (x) is called a penalty aggregate.
Since the penalty ϕideal is not tractable with the unconstrained optimization algorithms

we have seen so far, we will substitute it with nicer smooth penalty functions. We define a
prototype penalty function ϕ(t) by requiring

1. ϕ is convex and monotonically increasing

2. Increasingly steep for infeasible points: lim
t→∞

ϕ′(t) =∞

3. Increasingly flat for feasible points: lim
t→−∞

ϕ′(t) = 0

4. ϕ(0) = 0

5. (Arbitrary normalization) ϕ′(0) = 1.

Using this prototype function, we define a family of penalty functions ϕp(t) with the param-
eter p > 0 such that in the limit p → ∞, ϕp → ϕideal. For example, one way to define such
a family is

ϕp(t) =
1

p
ϕ(pt).

Note that ϕ′p(t) = ϕ′(pt), meaning that for the same value of t > 0, ϕp becomes increasingly
bigger as p grows, while for the same value of t < 0, ϕp becomes increasingly closer to 0.

The following choices are common for the prototype penalty function:

1. Exponential : ϕ(t) = et − 1. The disadvantage of this penalty is that standard floating
point arithmetics will saturate at infinity for relatively modest values of t ≈ 100.
Special care has to be taken in the numerical optimization algorithms to avoid infinite
values.

2. Quadratic-logarithmic is a penalty function growing quadratically for positive values,
and decreasing very slowly as a logarithm for negative ones. An example of such a
function is

ϕ(t) =


t2

2
+ t : t ≤ −1

2

−1

4
log(−2t)− 3

8
: t > −1

2
.

The particular choice of the coefficients guarantees that the function is C2 at t = −1

2
.

Exercise 1. Show that the above functions are C2 satisfying the penalty function conditions.

Equipped with the family of penalty functions, we can formulate the penalty aggregate
for every p,

Fp(x) ≡ f(x) +
m∑
i=1

ϕp(gi(x)).
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Penalty methods start with a moderate value of p, minimize Fp(x), increase p, and repeat
the process. This is summarized as the following iterative procedure:

input : function f ; inequality constraints g1, . . . , gm, initial point x0; parameter
β > 1

output: (approximate) constrained local minimizer x∗ of f s.t. gi ≤ 0
Start with a small p0
for k = 1, 2, . . . , until convergence do

Find xk = arg min
x
Fpk−1

(x) using any unconstrained minimization algorithm

initialized with xk−1
Increase penalty parameter pk = βpk−1

end

Return x∗ = xk

Algorithm 1: Penalty method
The typical choice for β is 2÷10. Outer iterations are typically stopped when the constraint
violation is below a preset threshold,

max{gi(x)} ≤ ε

and the change in the function value f(xk) or the change in the argument ‖xk − xk−1‖ is
sufficiently small. Another commonly used stopping condition is when pk reaches some pmax,
around 105 ÷ 106.

When the problem has equality constraints, they can be trivially converted into inequality
constraints. However, it is more efficient to introduce them into the penalty aggregate using
a special penalty for equality constraints. The ideal penalty for equality constraint is

ψideal(t) =

{
0 : t = 0
∞ : t 6= 0.

As before, it can be replaced by a family of penalty functions ψp(t) =
1

p
ψ(pt) derived from

a prototype function, e.g., ψ(t) = t2, growing increasingly fast to infinity for t 6= 0. Other
constructions of the parametric family are, for example, ψp(t) = pψ(t) (this construction is
equivalent to the previous one for the quadratic penalty).

3 Barrier methods

In some problems, the objective outside the feasible set is numerically ill-behaved or even
undefined (think of f(x) = −log(x) subject to x > 0). In such cases, a special types of
penalties are built ensuring lim

t↑0
ϕ′(t) =∞ and ϕ(t) =∞ for t ≥ 0. Such penalties are called

barrier functions, and methods involving them barrier methods. An example of a barrier
function is ϕ(t) = − log(−t).

The advantage of barrier methods is that they always produce a strictly feasible solu-
tion. The disadvantage is that special precaution has to be taken e.g. in the line search to
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guarantee that no infeasible points are substituted into the barrier aggregate (for example,
if Newton’s method is used with inexact line search, one has to decrease the step sufficiently
to ensure that the resulting point is feasible, and only then to start applying the standard
Armijo rule). Also, barrier methods must be initialized with a feasible point.

4 Derivation of KKT conditions via penalty methods

There is a deep connection between penalty methods and KKT conditions, that we will now
try to illustrate. Let us denote x∗p = arg min

x
Fp(x). From the first-order necessary condition

on this unconstrained problem, we have

0 = ∇Fp(x∗p) = ∇f(x∗p) +
m∑
i=1

ϕ′p(gi(x
∗
p))∇gi(x∗p).

Denoting λpi = ϕ′p(gi(x
∗
p)), we have

0 = ∇Fp(x∗p) = ∇f(x∗p) +
m∑
i=1

λpi∇gi(x∗p) = ∇xL(x∗p,λ
p).

Note that since ϕp is monotonically increasing λpi ≥ 0.
In the limit p → ∞, ϕp → ϕideal, and x∗p → x∗. It is more elaborate to show that

λp → λ∗. First, observe that for inactive constraints, gi(x
∗
p) < 0, λpi = ϕ′p(gi(x

∗
p)) becomes

flatter as p grows, resulting in λpi → λ∗i = 0. For a sufficiently large p we can therefore
neglect the sum λpi∇gi(x∗p) over the inactive constraint, remaining with

−∇f(x∗p) = Ga(x
∗
p)λ

p
a,

where λpa is subvector of λp corresponding to the active constraints, and Ga(x
∗
p) is a matrix

whose columns are the gradients of the corresponding active constraints gi at x∗p.
When the gradients of the active constraints are linearly independent, the matrix Ga

is full rank and as the result a small change in x∗p resulting in a small perturbation in Ga

results in a small change in the solution λpa. As the result, the limit λpa → λ∗ exists.

Exercise 2. Prove formally the existence of the above limit.

5 Augmented Lagrangian

One of the major disadvantages of penalty methods is the need to increase the parameter
p to very large values in order to obtain accurate solutions. This increase the derivatives of
the penalty aggregate, making its unconstrained optimization challenging to most numerical
methods. The family of augmented Lagrangian algorithms overcomes this limitation.
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In order to construct augmented Lagrangian, let us first consider problems with inequality
constraints only, for which we construct a new family of penalty-multiplier functions, ϕp,λ(t),
similar to our previous family of penalty function with the distinction that now we also
demand ϕ′(0) = λ. The analog of the penalty aggregate is now played by the augmented
Lagrangian function

Fp(x;λ) = f(x) +
m∑
i=1

ϕ′p,λi(gi(x))∇gi(x).

As before, unconstrained minimization is used to find

x∗p,λ = arg min
x
Fp(x;λ).

If for some of the constraints we have gi(x
∗
p) ≥ 0, we will try to modify Fp(x;λ) in such

a way to shift the value of gi(x
∗
p) as close as possible to zero and reduce the constraint

violation. This can be done by changing λi to λ′i = ϕ′p,λi(gi(x
∗
p,λ)) in such a way that

ϕ′p,λ′i(0) = ϕ′p,λi(gi(x
∗
p,λ)). Note that this reduction in the constraint violation is achieved

without changing p at all – in fact, augmented Lagrangian methods produce very accurate
solutions with a constant or only moderately increasing p.

The procedure is summarized as the following algorithm:

input : function f ; inequality constraints g1, . . . , gm, initial point x0; parameter
β > 1

output: (approximate) constrained local minimizer x∗ of f s.t. gi ≤ 0
Start with a small p0 and an initial estimate of the multipliers λ0 (λ0 = 1 if no better
guess is available)
for k = 1, 2, . . . , until convergence do

Find xk = arg min
x
Fpk−1

(x;λk−1)

Update multipliers λk = ϕ′p,λk−1
(xk)

Optional safeguard: restrict λk = min

{
max

{
λk,

1

3
λk−1

}
, 3λk−1

}
Optional: update penalty parameter pk = min{βpk−1, pmax}

end

Return x∗ = xk

Algorithm 2: Augmented Lagrangian method
The update of the penalty parameter is not necessary at all, but increasing p mildly until
it reaches pmax ≈ 100 ÷ 1000 (the exact setting is very problem-dependent!) usually im-
proves convergence speed. The safeguard on the update of the multipliers prevents too rapid
decrease of λ to zero that might negatively affect the convergence speed.

In case of equality constraints, we can trivially convert them into inequality constraints.
However, it is numerically more efficient to handle equality constraints using an appropriate
family of penalty-multiplier functions. Recall that in the penalty method we used a quadratic
penalty function of the form ψp(t) = pt2. In order to convert it to a penalty-multiplier
function, we have to enforce ψ′p,µ(0) = µ, which is impossible with this particular choice.
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The typical solution to this problem is the addition of a linear term of the form

ψ′p,µ(0) = pt2 + µt.

Let us assume to be given the optimal Lagrange multiplier λ∗ at the solution x∗ of
the constrained problem. By virtue of our construction of the penalty-multiplier functions,
for an active constraint gi(x

∗) = 0, ϕ′p,λ∗i (gi(x
∗)) = ϕ′p,λ∗i (0) = λ∗i . In case of an inactive

constraint, λ∗i = 0, meaning that the slope of ϕp,λ∗i is zero at t ≤ 0. Since gi(x
∗) < 0, we

have ϕ′p,λ∗i (gi(x
∗)) = 0 = λ∗i . Combining these results,

Fp(x
∗;λ∗) = f(x∗) +

m∑
i=1

ϕ′p,λ∗i (gi(x
∗))∇gi(x∗) = ∇Lx(x∗,λ∗).

As the result,
x∗ = arg min

x
Fp(x;λ∗)

for any p (not necessarily p → ∞). This is a very strong property of augmented Lagrange
algorithms, that makes it more advantageous over penalty methods.
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