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Introduction

1 Examples of optimization problems

Parametric regression

Suppose we are given experimental measurements of some physical process such as the height
yi at time ti of a ball thrown from the top of Pisa tower. Elementary physics suggests us
that

h(t) = x1 + x2t + x3t
2,

where x1 is the initial height of the ball, x2 is its initial velocity, and x3 should be the free
fall acceleration. We will call h(t;x) a model with model parameters x = (x1, x2, x3). In
order to fit the model to the data, we can try finding the parameters that best describe the
data. To do so, we need to define an error criterion such as the sum of squared differences

f(x) =
m∑
i=1

(h(ti;x)− yi)
2 =

m∑
i=1

(x1 + x2ti + x3t
2
i − yi)

2

and look for such x that brings f(x) to a minimum.
Such problems are called unconstrained continuous minimization or, more generally, op-

timization problems. The term “continuous” refers to the fact that the optimization variable
x is continuous (in our example, x ∈ R3), while the term “unconstrained” means that no
constraints are imposed on x. The function f(x) is called the objective function (or, simply,
the objective) of the optimization problem, which is frequently denoted as

min
x

f(x).

The minimum value attained by f is called the (global) minimum, while the value of the
optimization variable at which the minimum is obtained is called the minimizer or the
solution of the problem. The latter is usually denoted as

x∗ = arg min
x

f(x).

Oftentimes, the two notions are confused, and the term “minimum” is (ab)used to denote
both.
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Going back to our example, we may complicate the physics a bit and introduce, for
example, another term to account for the air friction. In general, we can write a model

h(t;x) =
n∑

k=1

xkϕk(t),

where ϕk(t) are some functions. Observe that despite the fact that these functions are
typically nonlinear (in t), the model h is linear in x (for this reason, regression problems
of this kind are called “linear regression”), and the objective f(x) is quadratic in x. The
latter fact allows to give a simple closed-form expression for the minimizer (as well as the
minimum) of the optimization problem.

Exercise 1. Show a closed-form solution for the linear parametric regression discussed above.
Suggestion: use matrix notation.

Linear regression problems were among the first practically used optimization problems,
mainly by the nineteenth century statisticians, long before the advent of computers and
computational methods.

Nonlinear regression

In many practical problems, the dependence of the model on its parameters is nonlinear. For
example, consider h(t;A,b) = ϕ(At+b) where ϕ is a nonlinear function, and the matrix A
and the vector b are the model parameters. We can still try solving an optimization problem
minimizing the quadratic objective function we had before. However, the difference between
the optimization problem involving this nonlinear model and its linear counterpart is vast:
while in the latter case we had a closed-form expression for the solution, in the former case
no known algorithm can find the global minimizer in reasonable time.

It is important to realize that general optimization problems are unsolvable. This often
gives rise to the dilemma: is it better to use a bad model that we can solve, or a good model
that we cannot (or, more precisely, are not guaranteed to solve but still can try to solve).
While the ultimate answer to this dilemma probably belongs to the domain of philosophy, my
personal opinion favors the second choice. Engineering practice is full of examples of “bad
but tractable” models (band-limited signals in Shannon’s sampling theory, linear models in
classification and regression problems, Gaussian sources in information theory, etc.), with
lots of useful applications. Yet, attempts to break the limitations of these models by trying
to solve “better but unsolvable” models sometimes lead to breakthroughs (for example,
compressed sensing, and artificial neural networks).

In this course, we will see what can be done with general optimization problems and
what cannot. We will also encounter a class of solvable non-linear models called convex
optimization problems.
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Optimal resource assignment

As another example of an optimization problem, consider a particular problem of resource
assignment. Let there be M power plants, each producing pm units of power, m = 1, . . . ,M .
Let there be N customers, each demanding qn units of power, n = 1, . . . , N . The geographic
locations of the customers and the plants result in certain costs: the cost of transferring
a unit of electrical power from plant m to customer n is cmn. Our goal is to solve the
optimal assignment problem: find the amount of electricity xmn each plant has to transfer
to each customer to minimize the total cost, while answering the customers’ demands and
not exceeding the plants’ capacities. Mathematically, the problem can be formulated as

min
X∈Rm×n

∑
m,n

cmnxmn subject to

{ ∑
n xmn ≤ pm, m = 1, . . . ,M∑
m xmn ≤ qn, n = 1, . . . , N.

Such optimization problems are called constrained because the optimization variable X
is restricted to a sub-set of Rm×n; the particular types of constraints are called inequality
constraints. Note that both the objective and the constraints are linear in X. Optimization
problems of this kind are called linear programs.
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