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Abstract—Intel R© RealSenseTM SR300 is a depth camera capable of providing a VGA-size depth map at 60 fps and 0.125mm depth
resolution. In addition, it outputs an infrared VGA-resolution image and a 1080p color texture image at 30 fps. SR300 form-factor
enables it to be integrated into small consumer products and as a front facing camera in laptops and UltrabooksTM. The SR300 depth
camera is based on a coded-light technology where triangulation between projected patterns and images captured by a dedicated
sensor is used to produce the depth map. Each projected line is coded by a special temporal optical code, that enables a dense depth
map reconstruction from its reflection. The solid mechanical assembly of the camera allows it to stay calibrated throughout temperature
and pressure changes, drops, and hits. In addition, active dynamic control maintains a calibrated depth output. An extended API LibRS
released with the camera allows developers to integrate the camera in various applications. Algorithms for 3D scanning, facial analysis,
hand gesture recognition, and tracking are within reach for applications using the SR300. In this paper, we describe the underlying
technology, hardware, and algorithms of the SR300, as well as its calibration procedure, and outline some use cases. We believe that
this paper will provide a full case study of a mass-produced depth sensing product and technology.

Index Terms—Intel, RealSense, 3D Camera, SR300, Coded Light, Depth Reconstruction.
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Fig. 1: Example of a 3D scan obtained with the SR300 camera.

1 INTRODUCTION

Just a few years ago, 3D depth sensing devices could
be found only in a few academic and industrial labs due
to their prohibitive cost. The manufacturers of such sen-
sors catered mainly to high-precision applications such as
metrology, industrial quality control, and digital heritage.
High cost as well as large form factor precluded the mass
use of depth sensors in commodity applications.

The past decade has witnessed the ‘democratization’
of 3D sensing technology and its transition to consumer
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applications. The first mass-produced low-cost depth sen-
sor became accessible to consumers with the introduction
of the Microsoft KinectTM, a depth sensor based on the
structured light technology developed by Primesense R©.
Microsoft KinectTM was the first commodity product 3D
sensing device that enabled a new experience for gaming,
where players could control and interact using body move-
ment, without holding or wearing special devices.

The academic community has embraced the develop-
ment of low-cost depth sensors, boosting research in the
fields of computer vision and graphics. It was shown that
complex problems of image understanding applications
such as gesture and action recognition [1], [2], background
segmentation, facial expressions analysis [3], marker-less
motion capture [4], and 3D enhanced SLAM [5]–[7] are
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Fig. 2: 5 bit Grey code in time and image space.

greatly simplified by providing additional depth informa-
tion. Even-though modern deep learning techniques allow
nowadays purely 2D image-based solutions to some of the
aforementioned problems [8], such methods require massive
training datasets and are computationally expensive, which
limits their applicability in real-time and power-efficient
platforms such as mobile phones, and drones. Finally, the
recent trend of ‘geometric deep learning’ [9], [10] tries to
combine the best of the two worlds, developing deep neural
network architectures capable of dealing with geometric
data.

Popular optical depth sensing technologies includes pas-
sive methods [11] such as Shape-from-Shading and Shape-
from-Motion and active methods such as active stereo,
structured light [12], and Time-of-Flight (ToF) [13]. Intel R©
RealSenseTM low cost coded light depth camera was moti-
vated by academic prototypes originally developed in [14]–
[16]. In 2014, Intel introduced the world smallest consumer
depth camera under the retail name F200. Its successor
SR300 was released the following year as an upgraded
camera with better depth quality and lower cost. Coded
light technology was chosen for its high image quality and
resolution, ability to handle texture-less objects, low cost,
small form factor, and mass production capability.

In this paper, we overview the technological foundations
of the SR300 sensor. The rest of the paper is organized
as follows: Section 2 presents the coded light technology
used in SR300. Section 3 provides an overview of the SR300
hardware. Section 4 gives detailed description of the depth
reconstruction pipeline. Section 5 presents the role of the
firmware and some of the applications implemented in it.
Section 6 reviews the optical calibration procedure of the
SR300. Section 7 presents some use case examples and ap-
plications of the SR300, and Section 8 discusses its validation
procedure and shows experimental reports.

2 CODED LIGHT TECHNOLOGY

Triangulation-based passive stereo systems use two or more
views (captured by respective cameras) of the same scene
to determine the 3D position of the scene’s objects. Pixel
descriptors from these cameras are matched in order to
calculate the depth of the pixels, given a known a priori
calibration of the setup. Usually, the epipolar constraint is
used to narrow the search space, but finding pixel corre-
spondence is not an easy task especially when the object has
little or no texture.
Structured light refers to a variety of active stereo techniques
exploiting an additional controlled light pattern (or a series
of patterns) projected onto the scanned scene, by replacing

one of the sensors with a projector. Such patterns greatly
simplify the correspondence problem by uniquely encoding
each scene point thus allowing to identify corresponding
points across views. Coded light refers to a subclass of struc-
tured light techniques that uses temporal or spatial codes to
differentiate between projector points.

There are several types of patterns used in a coded light
system. The difference is the system setup - monochromatic
vs RGB sensors, 1D projector vs 2D, static vs moving scene,
etc. The projector pattern determines the code each point
will have.

Temporal Binary Gray Code
Temporal projected patterns were first introduced in 1982
[17]. Instead of projecting a single pattern, several pat-
terns are projected sequentially and the ”codeword” is
constructed from this series of illuminations. The advantage
of this kind of temporal patterns is that it can create dense
and high resolution code. For example, in SR300 there are
245,280 pattern points, compared to single pattern struc-
tured light devices that typically project up to 30,000 points.
In most cases, a 1D projector is used, since the depth can be
calculated using the intersection between a ray and a plane.
The main disadvantage of temporal coded light is its motion
sensitivity, since the temporal coherency of the codes might
break when objects in the scene move.

The temporal code can be RGB, gray-level, or binary.
Every depth frame comprises a sequence of different projec-
tor patterns and image sensor ”sub” frames. With temporal
binary patterns, a point can either be illuminated or not in
every sub-frame, thus creating a binary code. Binary codes
typically require a longer pattern sequence to achieve spatial
resolution compared to gray-level codes, but are simpler to
compute and project.

Gray code [18] is a particular type of binary coding orig-
inally proposed in [19]. With this technique, the projected
patterns are stripes images where each image has a different
spatial frequency, so that eventually, each stripe in space
is encoded using the Gray code created by all patterns in
time, as depicted in Fig 2. With Grey code, there are no two
transitions at the same location, which improves the actual
spatial resolution for a given number of patterns.

3 HARDWARE OVERVIEW

The heart of the depth camera is the projector and the
sensor employed for the triangulation process. The light
wavelength band around 860nm was chosen to be in the
near-infrared (NIR) range, a common choice in products
that are interacting with humans and the light projection



is intended to be invisible. There are two additional main
components: the vision processor ASIC, on which the depth
reconstruction pipeline is implemented, and the RGB sensor
providing additional texture image, synced both in space
and time to the depth image.

A major drawback of any triangulation-based system,
including coded light, is its high sensitivity to mechanical
and optical changes. In the SR300 design, special care was
taken to ensure stability over time, temperature, external
disturbances and lifetime of the product, while maintaining
a small enough form factor so the camera could fit in small
devices and Ultrabooks.

Mechanical assembly
The SR300 is packed in a small, 110 × 12.5 × 3.8mm, 9.4 g
form factor. The main subassembly is a PCB, the moth-
erboard of the SR300; all the components are connected
through it. Beside the cameras, projector and the vision pro-
cessor ASIC, the PCB also contains flash memory, color im-
age signal processor (ISP), privacy led, and power delivery
circuit. Additional subassembly components include level-
ing adhesive applied to the camera and projector subassem-
blies to create a level surface between both sub-assemblies,
adhesive liner applied to the leveling adhesive and acting as
the thermally and electrically conductive interface between
the SR300 and the system assembly adhesive, and assembly
frame, which adheres to the main subassembly and assists
in rigidity, thermal dissipation, and EMI. The components
arrangement is displayed in Fig 4.

IR Camera
The IR imaging sensor is a proprietary custom-designed
sensor. It is a 1/6” 640 × 480 pixels global shutter CDS
sensor, with frame rate of 600 fps (1200 fps in half resolution)
and a 5T pixel size of 3.6µm optimized for high quantum
efficiency at 860nm wavelength. A fixed focus lens with F-
number of 1.9, field of view of 72 x 59 deg, and relatively
high distortion (up to 15%) is used. The camera has an
incorporated IR band filter.

Projector
The IR projector comprises a 860 nm laser diode emitting
a small spot laser beam, a lens expanding the beam into
a vertical line, and a tiny micro electro-mechanical system
(MEMS) mirror that moves horizontally to create the desired
pattern. The MEMS rotates the mirror at high frequency

Fig. 3: SR300 3D imaging system.

Fig. 4: SR300 assembly.

in harmonic motion to create an horizontal field of view
of 72 degrees. It packs exceptional electro-static actuation,
extremely low power consumption, and hardware safety
mechanisms that provide protection from hacking and mal-
functions, giving the SR300 Class 1 laser compliance. The
shape of the projected pattern is controllable and is used
to reduce artifacts [20]. The projected pattern is a vertical
stripes image with the effect of the projector intrinsics: lens
distortion, focal length, and optical axis.

RGB camera
The attached RGB camera is a full HD, 1920 × 1080 pixels
rolling shutter sensor. The color camera lens has F-number
of 2.4, field of view of 68 x 42 deg, and 1.5% distortion.
The camera incorporates an IR cut filter so it is unaffected
by the projected patterns. The RGB camera can work with
HW level synchronization, giving the depth and the RGB
image temporal synchronization well below 1ms . The RGB
camera is connected to a specialized ISP performing demo-
saicing, color correction, noise reduction, gamma correction,
image sharpening, and format conversion to ensure a high
quality color image.

3D Imaging ASIC
The vision processor ASIC implements the depth recon-
struction pipeline described in Section 4. The custom design
allows the pipeline to achieve a high frame rate while
keeping the total system power consumption at around
1.9W. The ASIC also incorporate a microcontroller for boot-
loading and device firmware. It supports USB-3 protocol to
enable the high data rate of 60 fps VGA depth+IR image and
30 fps full HD color image simultaneously, MIPI protocol
between the optical components, I2C, SPI UART, and JTAG
for development.

4 DEPTH RECONSTRUCTION PIPELINE

The Depth Reconstruction pipeline consists of two main
modules. First, the Codeword Extraction module extracts
the codeword for every pixel. It evaluates if every pixel is
illuminated or not in every input frame. In addition, infor-
mation about the sub-pixel location of the transitions in the
pattern is calculated. Second comes the Depth Generation
module, activated once all patterns are projected. It uses the
codeword and the calibration data to reconstruct the depth
at each pixel. In addition, it enhances the depth image. A
flow chart of the depth reconstruction pipeline is depicted
in Figure 5.
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Fig. 5: Flow chart of the depth reconstruction pipeline.

CODEWORD EXTRACTION PHASE

The Codeword Extraction operates at the frame rate of
the input images from the sensor (normally 600 fps) and
its main goal is to evaluate the codeword per pixel. The
Codeword Extraction pipeline consists of two main proce-
dures: Normalization and Binarization and sub-pixel estimation,
detailed below.

The input for this module are images of the Gray pat-
terns. We used 9 gray code patterns denoted as P0, . . . , P8

and two reference images: a fully illuminated image (de-
noted as I1) and non-illuminated image (denoted as I0).
The projected sequence is I0, I1, P0, . . . , P8. After substan-
tial tuning and considerations of tradeoffs of the optical-
algorithmical implementation, we found that 9 patterns
offer the best performance. With 9 patterns, the scene is
projected by a total of 511 transitions, which in full sensor
resolution accounts for a transition every little more than
1 pixel, Which sets a limit for the depth spatial ”lateral”
resolution at approximately 1.25 pixels.

When a reference pattern I0/I1 is projected, it is stored
in memory to be used later for normalizing the P0–P8

projected patterns. The output of the Codeword Extraction
phase is a frame with per pixel 9-bit code-word and flags
that indicate the validity of the pixel and the sub-pixel
location of a binary transition, if there is one.

Normalization

This is the first block of the reconstruction pipeline. Its
main goal is to evaluate the amount of IR projector emitted
photons reflected from the scene object in each pixel on the
pattern image Pi. In order to do that, the reference images
I0 and I1 are used. The non-illuminated image I0 is used
as estimation of the ambient light. The illuminated image
is used as an albedo estimation. When a reference pattern
arrives to the Normalization block, it is being stored in
memory, after a 2D low pass filter in the form of 3 × 5
median filter, since the albedo and the ambient light are
approximately piece-wise smooth. Both reference images
and the patterns are converted from their native image
digital level to photoelectrons using the sensors QE factor.

Binarization and sub-pixel estimation

Binarization is the process of converting each pixel to one-
bit indication of whether the pixel was illuminated (1) or not
(0) in the given pattern. The binarization block inputs are
the normalized pattern images, the filtered reference images,
and a 4-bit state map. The state map is being modified by
the block during the process of the binarization, and holds

information regarding the validity of the pixel, and the sub-
pixel location of a transition if such exist. The binarization
output is a 1 bit pixel data and the updated state map.

The Binarization process is done by using a maximum
likelihood estimation [21]. We used the following model to
describe the signal,

y = σ2 + β + αx+ α2(x2ρ2 + η2) (1)

where y is the signal sampled by the sensor, x is the signal
reflected from the emitter projection, σ is the readout noise,
ρ is the speckle noise coefficient, η is uncertainty term, α is
the albedo, and β is the ambient light.

We characterize the sensor and projector to evaluate the
noises (σ, ρ and η). η factor is not standard, and is used
to compensate over other phenomena not being considered.
The albedo and the ambient light, α and β, respectively, are
evaluated using the reference images; α = I1 − I0, β = I0.

The binarization using (log) maximum likelihood solves
the following problem:

min
x

(y−v)2
v + log v

s.t. v = σ2 + β + αx+ α2(x2ρ2 + η2)
(2)

Since the above minimization problem is complex and ex-
pensive in hardware resources, we implemented it using
templates; We constructed several 2D templates per pattern
with size of 3x9, each template is a possible x from 2, rep-
resenting the signal horizontal cross-section along the pixel.
Using the albedo estimation, the ambient light estimation,
and the evaluated noise factors, we can calculate v. We then
find the most likely template that describes the signal by
evaluating the cost of each v and picking the template that
produced the lowest cost. The chosen template tells us if
the pixel should be marked as 1 or 0, which is stored in the
proper position of the codeword, according to the pattern
type. The chosen pixel template also indicate if and where a
transition occurred with 0.1 pixels precision.

Special considerations are taken for the hardware im-
plementation of the 1

v and log v functions. They are im-
plemented using two lookup tables (LUTs) and linear in-
terpolation, using a custom floating point representation.
By the location of the most significant bit of v the scale is
determined, the 4 bits after the most significant are used
as the entry to the lookup tables and the residual bits are
used to increase the accuracy by multiplying the linear
interpolation LUT result by the residual with the residual
size as the scale for the interpolation. The accuracy of the
function is up to a millionth of the result of the function. For



example, dividing v = 1950, we have,

notation description Decimal Binary
v to be divided 1950 10111010101110
s scale 13 10111010101110
l LUT entry 7 10111010101110
r Residual 174 10111010101110
den Residual scale 9 10111010101110

1
v · 2

s+16 ≈ LUTdiv-op [l] +
(
r · LUTdiv-interp [l]

)
� den .

The Binarization block also determines the confidence
of the pixel by estimating the SNR. This is done by using
the model in Equation 1 with the albedo and ambient
information only. We compute the deviation of the signal
when the emitter illuminates the pixel from

√
yx=1 and

deviation of the signal when the emitter does not illuminates
the pixel from

√
yx=0. Combining the two factors gives an

uncertainty estimation. The confidence is the ratio between
the uncertainty and the albedo,

vp = σ2 + β + α+ α2(ρ2 + η2)
vn = σ2 + β + α2η2

σ =
√
vp +
√
vn

confidence = α
σ .

(3)

We then apply a threshold to invalidate low confidence
pixels. Later in the pipeline, there is an effort to fix invalid
pixels if there is enough information in the pixels neighbor-
hood.

DEPTH GENERATION PHASE

The Depth Generation phase works at the frame rate of the
output (normally 60 fps) and its main goal is to evaluate
the codeword per pixel. The pipeline consists of three main
modules: Codeword decoding and correction, Triangulation, and
Post-processing.

Codeword Decoding and Correction

As stated before, Gray code is used to encode the projector
points, so once the code word is extracted, it needs to be
decoded into a binary code for ease of use. The conversion
is done in the standard fashion as in the original Gray code
patent [18].

The accuracy of the code has a dramatic effect on the
quality of the depth image, since triangulation amplifies
errors. Thus, it is crucial to purify the codeword. To do that,
we perform complex filtering on the binary code. First, in
the binary codeword representation, the image points are
a horizontal monotonic ascending function. Another key
observation is that in a coded light system, the information
resides in vertical lines and hence horizontal transitions in
the projected patterns. Simple filters that are usually applied
to images, such as Gaussian or bilateral filter, do not perform
well on the code images and usually cause artifacts, due
to the special structure of the code. Several special code
filters [22] are applied to the binary coded image, using a
linear code assumption derived from the depth piecewise
smoothness model. The code correction is done using three
types of filters described below.

4.0.1 Vertical correction
The Vertical Correction is a non linear 2D filter that analyzes
transitions misalignment along a vertical path. It is used to
straighten vertical code transitions by refining the sub-pixel
transition locations from corresponding transitions in verti-
cal neighbors. Ideally, transitions in three subsequent sub-
pixel points should lie on a line. The principle of operation
is shown in Figure 6.

i - 1 i i + 1

j - 1

j

j + 1

Fig. 6: Illustration of the operation of the vertical code filter.
The original location of the detected transition in pixel (i, j)
(in black) is corrected (red) to align with the transition in the
rows above and below.

4.0.2 Horizontal correction
The Horizontal Correction is a non linear 2D filter that
analyzes transitions misalignment along a horizontal path.
The filter detects code transitions to the left and right of the
current code transition in one line of code, and adjusts the
sub-pixel position of the current transition such that they
are as equally spaced as possible. The principle of operation
is shown in Figure 7.
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Fig. 7: Illustration of the operation of the horizontal code
filter. Detected transitions are marked by black circles. The
original location of the detected transition in pixel (i, j) is
corrected (red) to align with the next and previous transi-
tions.

4.0.3 Consistency filter
Consistency Filter is a one dimensional horizontal filter
targeted to smooth the quantization of the code and to
correct misinterpretation of bits in the code words by iden-
tifying valid small code segments, interpolate them to a
higher resolution linear code, and extrapolate them where
invalid or inconsistent code exist. First, segments of code are
identified from one detected transition to the next. Second,
the beginning and the end of the segment is interpolated
through the segment to form a high-resolution code by re-
sampling each of the pixels in higher precision than the



quantization of the code. In cases when only one of the
boundaries is identified, the consistency filter extrapolates
the code from the valid end. If both ends are invalid, the
consistency filter invalidates the pixels in between, as is
most likely, some artifact from motion or inaccurate code
detection. The operation of the the filter is shown in Figure
8.
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Fig. 8: Illustration of the operation of the consistency filter
code filter. Detected transitions are marked by black circles.
The code values between transitions are interpolated and
mis-detected codes are fixed.

The aforementioned filters are applied in order to fix
inaccuracies in the detection of the transitions by alternating
horizontal and vertical filter several times (typically 2-3).
Such a sequence of filters has the effect of using filters with
larger support. Then, the consistency filter is applied to
improve the accuracy of the non-transition pixels by relying
on the corrected transitions. The result is a smooth and
more accurate binary code map with distinguishable depth
discontinuities.

Triangulation

Producing depth from the codewords and the calibration
is a mathematical computation called triangulation, where
the intersection between the rays from the sensor and the
planes projected by the projector is calculated. The inputs
are the pixel location in the sensor array, the codeword and
the intrinsic and extrinsic parameters describing the system.

Camera model

We used the standard pin-hole camera model. Given a point
Xw in homogeneous world coordinates, it is projected onto
the camera image plane to homogeneous coordinates Xc by
the following model

Xc = Kc

[
I 0

]
Xw, (4)

where Kc is the intrinsic camera matrix,

Kc =

fx 0 cx
0 fy cy
0 0 1

 .
The camera system of coordinates is assumed to coincide
with the world coordinate system, therefore trivial rotation
and translation (extrinsic) matrices are imposed.

To account for the lens distortion, a parametric distortion
model is applied. The corrected camera coordinates vector

Xc is related to its uncorrected counterpart X ′c through the
following inverse model,

X ′c = KcDα

(
K−1c Xc

)
, (5)

where Dα is a plane to plane map given by

x′ =
(
1 + α1ρ

2 + α2ρ
4 + α5ρ

6
)
x+ 2α3xy + α4

(
ρ2 + 2x2

)
y′ =

(
1 + α1ρ

2 + α2ρ
4 + α5ρ

6
)
x+ 2α4xy + α3

(
ρ2 + 2x2

)
.

(6)
with ρ2 = x2 + y2. The parameters α1, α2, α5 deter-
mine the radial distortion component, while α3 and α4

account for the tangential one. We refer to the vector
α = (α1, α2, α3, α4, α5)

>, as the camera inverse distortion pa-
rameters. We emphasize the difference between this inverse
model versus the standard forward model used in other sys-
tems. The benefits of this approach are simplification of the
depth reconstruction arithmetics, better accuracy and spatial
resolution as a result of avoiding interpolation required to
re-align the pixel grid.

Projector model
The projector is modeled as a one-dimensional pin-hole
system,

Xp = Kp

[
Rp tp

]
Xw = PpXw, (7)

where Xp is the 2× 1 vector of homogeneous coordinate on
the projector line, Kp is the 2×3 intrinsic matrix, and Rp, tp
are the extrinsic rotation and translation transformation
parameters relating between the camera and the projector
coordinate systems. We combine the intrinsic and the ex-
trinsic projector parameters into a single 2 × 4 projection
matrix Pp.

Projector distortion exists due to MEMS mirror electro-
magnetic motion and lens optics. Accounting for projector
distortion is more complex than in the case of the image
sensor lens due to the ambiguity of the second coordinate,
which is unobserved. To cope with it, a proprietary mecha-
nism is used [23]. The corrected projector coordinates vector
Xp is related to its uncorrected counterpart X ′p through the
following forward model

Xp = Dp
αX
′
p = Dp

α (PpXw) , (8)

where Dp
α is a plane to plane map derived from the follow-

ing 2D distortion function,

x′ = x

y′ = y + α1 + α2x+ α3x
2 + α4x

4 + α5xy.
(9)

Depth is reconstructed by observing xp, the first coordinate
of the two-dimensional projector location Xp = (xp, yp)

>,
at a camera pixel location Xc. Note that both Xc and Xp

are after distortion, and yp is unobserved. Reconstruction is
performed by the inverse projection operator R,

Xw = R
(
X ′c, x

′
p

)
(10)

where X ′c = D−1c (Xc) and x′p = D−1p (xp) are the undis-
torted camera and projector coordinates, respectively. Since
the location of each pixel Xc is fixed, X ′c is precomputed.
On the other hand, the projector coordinate cannot be undis-
torted as the inverse distortion D−1p requires the knowledge
of the unobserved second coordinate yp. Assuming xp is



known, for a given X ′c, the reconstructed world coordinate
is given by Xw = R

(
X ′c, x

′
p

)
. Re-projecting the result on the

projector plane yields Xp = Dp(PpXw). In other words,

Xp = Dp

(
PpR

(
X ′c, D

1
p (Xp)

))
(11)

is an identity on R2. Fixing the observed xp, the identity
restricted to R is

yp = Dp

(
PpR

(
X ′c, D

−1
p (xp, yp)

))
= S (yp) (12)

The operator S is continuous and has a fixed point, to which
the result of application of S multiple times to some initial
yp converge. In the absence of any better initialization, yp
is initialized to zero, resulting in a sequence of fixed point
iterations yp = S ◦ · · · ◦ S (0). In many practical situations
when the distortion is mild, a single iteration suffices, giving
yp ≈ (0).

Performing the reconstruction in hardware accurately is
done in a floating point arithmetic unit. Coefficients are
precomputed using the calibration parameters described
above to reduce the complexity of the computation. The
floating point results are then clipped and converted to a
16-bit integer representing distances up to 8m, which yields
the theoretical depth resolution of 0.125mm.

Depth post processing pipeline
At depth discontinuities (edges), the code estimation might
be inaccurate since it is difficult to distinguish between pro-
jected pattern transition and a scene (albedo or geometry)
transition. The outcome is typically noisy edges, especially
in the presence of motion. Since edge sharpness is a key
characteristic of depth image quality, post-processing filter-
ing is typically applied to enhance the edges. Other key
characteristics are the smoothness of objects in the scene
and the minimal detectable object size. Typically, edge-
preserving filters are used. We use a configurable series
of post processing filters aimed to improve the mentioned
characteristics [24].

The input to the pipeline is a 16-bit depth map and
4-bit flags that holds the state of the pixel (invalid, high
confidence, etc.). The pipeline is depicted in Figure 9.

Gradient Filter
Gradient Filter improves the depth image by removing
strong gradients, which mostly come from noise and motion
artifacts. It is a 3 × 3 filter that calculate the gradients
in all directions and if the magnitude of the gradient is
higher than some depth dependent threshold, it invalidates
the pixel. As depicted in Figure 9, there are actually two
gradient filters, one at the beginning, and one at the end
of the depth post processing. The second gradient filter is
usually configured with more conservative thresholds, and
mostly remove only a small amount of noise, that might
have been added during the pipeline.

Morphological Filter
Morphological Filter is a 3 × 3 sliding window that works
on the flags. It creates a 0/1 map from the flags according to
the pixels validity, and concatenates it to a binary number,
which is then used to access a pre-configured LUT contain-
ing a set of 3×3 patterns indicating the validity of the central
pixel. Examples of how it operates is shown in Figure 10.

Pre Gradient

Morphological

Geometric

Bilateral

Edge

Post Gradient

depth[16] , flags[4]

depth[16 bit]

Fig. 9: Flow chart of the depth post-processing pipeline

A B

Fig. 10: Examples of the Morphological filter operation. (A)
validating an invalid center pixel since it is part of well
determined slope. (B) invalidating a spurious central pixel.
(Light color denotes valid pixels).

Geometric Filter
A 5×5 filter that works on the flags and the depth image. It
creates a 0/1 map from the flags, and compare the 2D patch
to a set of templates shown in Figure 11, and determine the
pixel validity accordingly. For pixels whose binary neigh-
borhood matching a template (with some high confidence),
we mark the central pixel as valid/invalid based on the
value of the central pixel in the template. In a case where
a pixel is marked to be valid, we assign it the median
depth value of his neighborhood masked by the matching
template. This filter not only preserve edges, but takes into
account the validity and the spatial location of the neighbors
pixels.

Bilateral filter
For post-processing the depth image, we use a fixed-point
implementation of the Bilateral filter [25]–[29] with two ma-
jor modifications [30]. First, the spatial and radial smoothing



Fig. 11: The templates used by the Geometric filter (light
color denotes valid pixels).

parameters, σs and σr respectively, are depth dependent
and not constant throughout the image. This is due to the
nature of the errors in triangulation based depth camera,
where the error increases in proportion to the distance.
Without depth adaptive approach, the bilateral filter con-
figuration will result in oversmoothing of close objects and
undersmoothing of distant ones [30]. Another important
refinement is the pre-smoothing of of the depth central pixel,
by a 3 × 3 box filter that averages the valid neighboring
pixels with weighted confidence. The filter uses a 15 × 15
window.

Edge/Upscale filter

Edge filter is a 3× 3 sliding window that works on the flags
and the depth image. For each pixel it estimates the safest
one dimensional interpolation by analyzing all the options
of an edge going through the central pixel. Let x be the
center pixel and a1, . . . , a4, b1, . . . , b4 its neighbors,a1 a2 a3

b4 x a4
b3 b2 b1.


The filter looks for the minimal delta pair (ai, bi) such that
the values ai, bi are below some threshold. If this is the case,
even when the pixel x is on an edge, this direction is safe to
interpolate from the respective ai, bi. This way, we avoid
averaging a pixel with values from different sides of an
edge. The Edge filter can also be used for edge-preserving
line duplication (vertical upscaling). This is useful for the
1200FPS half resolution image which is first upscaled with
alternating invalid pixel rows, and then the edge filter is
used to fill in the central pixel from directions a1b1, a2b2,
a3b3 or a4b4 as in the normal case.

5 FIRMWARE APPLICATIONS

As mentioned in Section 3, the SR300 vision processor
ASIC is a system on chip with a CPU that runs the device
firmware (FW). The FW is combined with an advance statis-
tics gathering mechanism, capable of sampling the signals
inside the depth reconstruction pipeline, provides the ability
to create real-time autonomous applications that improves
the usability and quality of the SR300 like auto exposure,
laser intensity control, and MEMS control loop responsible
for stabilizing the effective field of view . The FW also
exposes depth controls enabling the user to change the
characteristics of the depth map according to the specific
need.

Depth controls and presets

The SR300 exposes the following main depth controls:
Filters option controls the amount of filtering and post

processing done on the depth image. Low value is less
processing. Value, 0, yields a Skeleton mode, where only
high confidence code transition pixels are preserved.Value,
7, produces blob mode, where all available depth is shown
and smooths out into blobs. Different filter options can be
used per application, for example, high accuracy 3D scans
may want to have only high confidence data, and long range
application could wish to see as much as possible of the
global structure without the fine details.

MvR (Motion vs Range) The longer the integration time
of the sensor, the farther the camera can see, but more
motion artifacts occur. This control enable the user to control
this trade-off, according to the dynamics of his usage. The
control simplifies the interaction with sensor exposure, FPS
and switching between half-resolution upscaled image to
full resolution mode. Small value means high FPS up to
120 and short integration time on half-resolution upscaled
image while high numbers go to full resolution lower FPS.

Confidence. The validity of the pixel can be controlled
using this property. There are several validity criteria, as
mentioned in section 4, like SNR based criteria or pixels
environment. Lower values will increase the amount of
valid pixels in the image, enabling less valid pixels to go
through.

Accuracy controls the number of patters used in the
generation of the code word. the more patterns are used,
the better the spatial resolution is, but in long range the
finer patterns may not be interpreted correctly.

RGB controls adjust the RGB camera image quality.
These include sharpness, white balance, exposure, etc. by
configuring the on chip ISP.

In addition to the above controls, the SR300 FW also
expose a set of predefined configuration according to usage,
which we call Presets. Instead of setting the controls individ-
ually, selecting a preset will set each control and additional
FW based features like the Auto range automatically. For
example, Long Range preset will set the confidence level to
it’s lowest, the accuracy to medium, MvR to 15 FPS and the
filter to blob mode, which will enable the camera to work
effectively up to 3 meters, and even see farther with more
noise.



(a) Horse head model
(b) No code correction, consistency fil-
ter and depth post processing

(c) With code correction, No consis-
tency filter and depth post processing

(d) With code correction and consis-
tency filter, No depth post processing

(e) With code correction and consis-
tency filter, only gradient filter post
processing

(f) With code correction and consis-
tency filter and depth post processing

Fig. 12: Reconstructed depth of the horse model (12a) of size 20× 6× 15 1 cm in different stages of the pipeline

Auto-Range

The Auto Range is a real time FW process that automatically
adjust the exposure and the laser power according to the
scene [31]. As objects getting closer to the camera, or move
faster, the exposure time of the sensor decrease, and in a
certain point the laser power as well, to avoid saturation
and to be able to perceive high velocity movements, and as
objects are getting far from the camera, the laser power and
exposure increases. This improves the quality of the depth
image and enable usages like hand gesture recognition in
large distances.

Power Gears

Power Gears are a real time FW process that given a set
of rules, changes the operating mode of the camera and its
power mode. A common used power gear is the wake up
option, where the camera wakes ups and start streaming
when a person is near the camera. This enables the SR300 to
serve as a wake -up device for the operating system, like
proximity sensor, but unlike proximity sensor, the set of
rules can be more flexible. Additional power gears allow
the camera to change FPS according to the dynamics of
the scene, thus preserving power while still catching user
gestures, etc.

MEMS FOV control

The MEMS FOV control loop is a real time FW process that
makes small changes to the electric load of the mirror in
order to make the opening angle of the mirror constant
over time and temperature. It does it by sampling the very
noisy location of the mirror in several points in its track,
and detect slow or abrupt movement by applying advance
control algorithms, thus keeping the projector FOV constant,
which highly improves the image quality.

Thermal compensation control

The thermal compensation control is a real time FW process
that makes small changes to the calibration parameters used
in the triangulation process according to the temperature
of the sensors [32]. Instead of using a power consuming,
expensive hardware to keep the modules temperature, a
parametric model is used to determine the correction to the
initial parameters, in an open loop fashion, where there is no
feedback from the camera. The correction itself is calibrated
over a large batch of units, by measuring the behavior of
the units in different temperatures, and its magnitude is
dependent on the initial calibration of each unit. In average,
the units depth accuracy is increased by up to a factor of
two over the range of operating temperatures (10-70 ◦C).



6 CALIBRATION

The Calibration procedure is performed to calculate the in-
trinsic parameters (lens parameters of IR camera, IR projector,
RGB camera) and the extrinsic parameters (Euclidean trans-
formation of relative positioning and orientation relative
to the IR camera). This evaluation procedure requires high
accuracy and is performed per unit.

It is a common practice in most triangulation based
depth camera to use a multi-view approach presented by
Zhang [33] which includes presenting the camera with a
planar target with detectable features, typically, a checker
board, captured at a set of orientations. This approach has
several major disadvantages for a high volume production
line of coded light systems. First, the need to automatically
capture several views of the target increases the acquisition
time and requires complicated mechanics. Second, the fea-
ture detection quality may be greatly compromised by the
low MTF of the IR sensor, affecting the quality of the entire
process. Therefore, for the calibration of the SR300 a novel
approach was developed. Single shot calibration using a
target including a set of different plane geometries, without
moving parts and not relying on feature detection [34]. This
approach enables calibration with increased accuracy even
for low quality sensors and optics, while using a single
view calibration process. It enables to reduce calibration
time and complexity in the production line to increase the
volume and reduce the cost. To that end, a single-view
feature-less depth and texture calibration using a target
with known geometry of seven planes colored with high-
contrast patterns was used. Instead of capturing multiple
different views of a target of a single plane geometry, we
use a target with seven different plane geometries. Each
plane is textured with a checkerboard pattern, with a known
and accurate geometry. The seven slanted planes include six
different planar patches and a background plane. The target
scene is shown in Figure 13.

Fig. 13: Seven planar targets used for single-view featureless
calibration of SR300

The calibration process is comprised of three stages.

Stage 1: Rough calibration process
An image of the target with uniform illumination is cap-
tured by the IR camera along with several images of a
known projector patterns, which are projected on the target.
Synthesized Images of the target and the same projected
pattern as would have been seen by the system with current
parameters are generated. Nominal production values are
used as a rough initialization of the camera and projector
intrinsics, the projector extrinsic, and the viewpoint (rel-
ative location and orientation) of the device with respect
to the target, under assumption that the geometry of the
target to be precisely known. The actual captured images
will have some misalignment with the synthesized images.
The calibration parameters can be determined to align the
captured image to the corresponding synthesized image,
by matching against their actually captured counterparts,
and the system intrinsic and extrinsic parameters as well
as the viewpoint are updated to produce the best match in
the sense of un-normalized correlation error criterion. This
first stage works entirely in the camera image plane using
roughly all the pixels in the image to perform calibration, as
opposed to the feature-based approaches that rely on a few
tens of landmark points.

Stage 2: Depth refinement
An image of the projected code is further acquired by
decoding a sequence of patterns projected by the projector.
The depth image is reconstructed by triangulation using the
current system parameters as evaluated in the first stage,
and is matched against a calculated range image of the
known target that would be seen by the camera with cur-
rent intrinsics from the current viewpoint. The images are
matched minimizing a geometric error criterion - squared
Euclidean distance. The second stage works in the world
coordinates, minimizing the actual geometric error of the
reconstructed range image, and is also free of any use of
landmark points.

Stage 3: RGB camera calibration
At the third stage, the intrinsics and extrinsic of the IR
camera and projector, and the viewpoint of the entire system
are fixed, and the intrinsic and extrinsic calibration of the
RGB camera is performed. An image of the target with
visible light illumination is acquired by the RGB camera,
and is matched against a synthesized image of the known
target that would have been seen by the RGB camera with
current parameters. The two images are matched and the
RGB camera parameters are updated to achieve the best
match in the sense of radiometrically corrected correlation
error criterion.

Calibration performance
We used this approach on millions of units. The calibration
converged to produce valid results on more than 99.7% of
the units, with average accuracy of 0.5% on 60 cm where it
is being tested in the factory. The calibration process usu-
ally takes 30 s, and support two units in parallel, allowing
production throughput of more than 100,000 units per tester
per month.



OEM Calibration

This approach was also extended to an OEM Calibration
procedure - where we recalibrate the unit after it was
assembled in the OEM product, to compensate over changes
to the module due to the assembly process. The OEM
calibration uses just a single plane with checkerboard target,
only to refine parameters that may have been changed in the
assembly process, like the extrinsic between the projector
and the IR camera, or the extrinsic between the RGB camera
and the IR camera, while fixing all other parameters.This
process achieves almost perfect yield, with accuracy of up
to 3% in 2.5m.

7 USE CASES AND APPLICATIONS

SR300 was released with an extended SDK that enables
developers to integrate advanced user interface into the
applications, like hand tracking, gesture recognition and
facial expressions. A number of games were also released
as a proof of concept for the technology and its abilities.
In addition, the SR300 was integrated in several products
and was approved as a Windows helloTM certified camera,
which enables the user to login to his Windows based PC
with ones face. Here we provide some examples of usages
and applications.

7.1 Hand tracking and Gesture recognition

The camera tracks the hand and detects the full 3D skeleton
of the hand, including all 22 joints, fingers information,
gestures, and more. It can track one or two hands, providing
precise joint-level locations and positions, identify gestures,
which are certain significant hand postures or motions, for
example a wave, tap or thumbs-up sign. Using this module,
developers can enable their application to be controlled by
hand motions, using visual cues alone (without a touch
interface). For instance, interpreting a hand tap as selection.

7.2 Cursor Mode

The Cursor Mode provides real-time 3D motion tracking of
the hand as a whole, making the hand act as the cursor.
It can track one or two hands, provides fast and accurate
tracking to follow the position of the hands in space, and
converts the received data to smooth and responsive hand
cursor data. This information is used to create a representa-
tion of the cursor on the monitor that can replace the mouse
cursor.

7.3 Facial analysis

The face tracking and analysis module provides a suite of
the following face algorithms.

Face detection locates a face (or multiple faces) from an
image or a video sequence, and returns the face location in a
rectangle. This feature can be used to count how many faces
are in the picture and find their general locations.

Landmark detection further identifies the feature points
(eyes, mouth, etc.) for a given face rectangle. The eye lo-
cation is of particular interest for applications that change
display perspectives based on the locations in the screen

users are looking at. Other feature points can be useful to
create a face avatar or find the orientation of the head.

Pose detection estimates the face orientation.
Expression detection calculates the scores for a few

supported facial expressions such as eye-closed and eye-
brow turning up.

Face recognition compares the current face with a set of
reference pictures in the recognition database to determine
the user’s identification.

Pulse estimation tracks subtle change in face skin color
over time and estimates the person’s pulse rate.

Gaze tracking traces the user’s eye movement and pro-
vides estimated eye gaze location on the display screen and
angles from the origin.

7.4 Background Segmentation
The User Segmentation module generates a segmented im-
age per frame which can be used to remove or replace
portions of the image behind the user’s head and shoulders
(background). The module works on the synchronized color
and depth images, and creates the segmented image in
the resolution of color image that contains a copy of the
input color data and a synthesized alpha channel (mask).
Pixels which correspond to the background will contain an
alpha channel of zero, and pixels which correspond to the
user will have an alpha value greater than zero. Amazon
Echo lookTM personal assistant device is using SR300 depth
camera primarily for bokeh like effects using background
blurring.

7.5 3D object Scanning
The 3D Scan module reconstructs the shape and appearance
of stationary objects from a sequence of images taken from
various viewing angles. Using segmentation and tracking
techniques, the image sequence is converted into a 3D
triangle mesh (e.g. PLY), for the purpose of simulation,
editing/printing or analysis.

8 EXPERIMENTAL RESULTS

The SR300 has being tested in a large variety of commercial
applications (Section 7) as well as many academic works
(see, e.g. [2]–[4]) and proved its capabilities in real time ap-
plication. The mass production and availability of the SR300
has spawn several academic benchmark of the camera in
different scenarios [35]–[37].

8.1 Validation Procedure
The production of the camera is being monitored by Intel
quality assurance strict procedures: stress tests, power and
heat cycles, drop test are part of the procedures the product
is tested before granted a “ready for market” approval, to
ensure the functionality of the camera over its entire life-
span. The camera is also tested in extreme condition such
as temperatures, air pressure and moister, to verify its func-
tionality and depth quality remains within the production
specification for any approved condition.
In addition, each “bare bone” camera is tested individuality
in the factory, ensuring it meets the depth, IR and RGB



image quality standards. Among the tested criteria are:
global accuracy, temporal and spatial noise, pixel validity
percentage, planarity of planar objects, depth to RGB map-
ping, IR and RGB image quality metrics such as SNR and
MTF. A camera is only shipped if all the metrics are positive,
thus ensuring it meets the production specifications.

8.2 Characterization
The validation procedure is meant to ensure each unit is
within spec. Every product release (Hardware or Firmware)
is accompanied by a characterization procedure done on
tens of units to measure the actual performance of an
average camera. In this procedure, each depth metric is
measured over all the effective depth range. Table 1 shows
the results of the depth related metrics for the latest SR300
release. The target is a plain wall with 90% reflectivity and
80% of the image is taken into account. Global accuracy
measures the median of the ground truth depth versus the
calculated depth over all the pixels. For spatial noise plain
fit RMS over 25× 25 window is calculated, and the median
of all the windows is taken. Temporal noise is the average
STD of a pixel in 10 frames. Max Error is the 98th percentile
of pixels absolute distance from the plane. Fill factor is the
percentage of pixels that are valid and with error of less than
1% of the distance from the plane.

TABLE 1: Characterization report for latest SR300 package,
shown at different distance from the camera.

Criterion/distance [mm] 500 700 900 1100 1300 1500

Global Accuracy [mm] 0.5 2.2 4.5 6.7 9.0 10.1
Spatial Noise [mm] 2.6 5.5 9.9 15.6 22.4 30.7
Temporal Noise [mm] 0.13 0.27 0.52 0.85 1.34 2.10
Max Error [mm] 3.9 9.2 16.8 26.2 37.3 50.2
Fill Factor [%] 98.2 96.4 90.9 85.3 78.8 69.7

Beside the simple depth metrics listed above, the units
undergo various test to measure the depth sharpness, defor-
mations, and distortion using complicated 3d models, and
IR and RGB advance image quality analysis as part of the
characterization procedure.

9 CONCLUSIONS
Depth sensing has undergone a revolution in the past
decade, with new technologies such as MEMS pico pro-
jectors enabling the development of small form factor and
low-cost depth cameras. Intel RealSense SR300 camera was
the first mass-produced sensor that had the form factor,
power, and price point allowing its integration into mobile
devices. This, in turn, has enabled a new line of products,
and improved existing products by supplying additional
vision capabilities.

Nowadays, low-cost depth cameras are an active aca-
demic and industrial research field. Overall, we can observe
a general trend of shifting towards time-of-flight (ToF) tech-
nologies. While ToF systems have multiple key advantages
over triangulation based systems, current ToF solutions
are still more expensive and have lower spatial resolution
compared to the SR300. A new line of depth cameras from
RealSense is based on stereo technology providing outdoor
depth sensing capabilities at an even lower cost.
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