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Despite their great promise, artificial intelligence (AI) systems have
yet to become ubiquitous in the daily practice of medicine largely
due to several crucial unmet needs of healthcare practitioners. These
include lack of explanations in clinically meaningful terms, handling
the presence of unknown medical conditions, and transparency
regarding the system’s limitations, both in terms of statistical per-
formance as well as recognizing situations for which the system’s
predictions are irrelevant. We articulate these unmet clinical needs
as machine-learning (ML) problems and systematically address
them with cutting-edge ML techniques. We focus on electrocardio-
gram (ECG) analysis as an example domain in which AI has great
potential and tackle two challenging tasks: the detection of a het-
erogeneous mix of known and unknown arrhythmias from ECG
and the identification of underlying cardio-pathology from seg-
ments annotated as normal sinus rhythm recorded in patients with
an intermittent arrhythmia.We validate our methods by simulating a
screening for arrhythmias in a large-scale population while adhering
to statistical significance requirements. Specifically, our system 1) vi-
sualizes the relative importance of each part of an ECG segment for
the final model decision; 2) upholds specified statistical constraints
on its out-of-sample performance and provides uncertainty estima-
tion for its predictions; 3) handles inputs containing unknown
rhythm types; and 4) handles data from unseen patients while also
flagging cases in which the model’s outputs are not usable for a
specific patient. This work represents a significant step toward over-
coming the limitations currently impeding the integration of AI into
clinical practice in cardiology and medicine in general.
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For decades, researchers have been applying machine-learning
(ML) algorithms to medical tasks with the goal of incorpo-

rating insights derived from data into real-world medical appli-
cations (1). Medical artificial intelligence (AI) can potentially be
used to increase personalization, reduce physician cognitive load,
aid decision-making, enable preventive medicine through predic-
tions, automate analysis of medical images and health records, and
much more (2–5). Recently, deep learning (DL), a branch of ML
focusing on algorithms that can learn directly from raw data (e.g.,
physiological signals), has risen to prominence. Such algorithms are
responsible for many of the current state-of-the-art results reported
in the literature for medical AI tasks, with several works claiming to
surpass a human doctor’s performance (5) in cases such as auto-
matic diagnosis of breast cancer from mammography scans (6); of
melanoma from skin images (7); of pathology from optical co-
herence tomography scans (8); assessing rehospitalization and in-
hospital death risks via analysis of electronic health records (9);
arrhythmia detection from electrocardiograms (ECG) analysis (10);
and more. However, this slew of research successes has so far not
led to widespread adoption of DL-based solutions in the day-to-day
practice of medicine and in the healthcare industry in general. Over
the past two years, the clinical community has responded to the re-
cent results reported by AI researchers via several top-tier review and
opinion papers (1, 2, 11–13), in which leading clinicians addressed

some specific shortcomings in recent state-of-the-art medical AI so-
lutions, which prevent them from being incorporated into clinical
practice.
Here, we consolidate the most frequently mentioned shortcomings

voiced by leading physicians and researchers into what we term the
“unmet needs” of clinicians from medical AI. We focus specifically on
shortcomings that most critically prevent clinical adoption of medical
AI solutions according to the recent medical literature. We formulate
these unmet needs in a manner actionable by ML researchers. We
define each unmet need accurately, demonstrate how it can bemet for
electrocardiogram (ECG) analysis tasks, and describe our contribu-
tions with respect to it. Our work goes beyond the usual search for
better model architectures or improved accuracy and focus on the
challenges of clinical usefulness. To clarify, although widespread
adoption of AI in the clinic is also impeded by broad systemic issues
such as regulatory, legal or ethical considerations, lack of standardized
data formats, integration with existing infrastructure, and others, this
work focuses only on the shortcomings of the AI systems themselves.

Clinical Interpretability: Explaining Model Predictions with
Medical Notions and Terminology
Arguably the loudest-voiced concern, especially regarding DL-
based solutions, is the lack of model interpretability, meaning there
is no way for the clinician to understand which factors led to the AI
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system’s decision (2, 14). This issue becomes doubly relevant in
light of the European Union’s General Data Protection Regu-
lation from April 2016, the 22nd article of which stipulates that a
subject of data-driven algorithmic decisions has a right to both
human intervention and meaningful explanation regarding said
decisions (15). Unfortunately, interpretability is an elusive concept;
as yet, the field of ML holds no consensus regarding its definition
(16). Furthermore, clinicians’ views regarding this matter are
mainly about justifying a model’s output using medical-domain
knowledge familiar to them (14). While common opinion holds
that DL algorithms are uninterpretable “black-boxes” (11, 17, 18),
this depends on what is required to be explained, with no lack of
evidence that deep models are, in some respects, more interpretable
than traditional models (16, 19). Here, we define this need as pro-
viding a clinician with a clear relationship between 1) the human-
recognizable features of the input, 2) the relevant medical domain
knowledge, and 3) the model’s output. For example, an automated
diagnosis of an arrhythmia (3) should be accompanied by the ECG
morphology in the input data most contributing to that diagnosis (1),
which should ideally be an established symptom for the detected
arrhythmia in the literature (2).

Uncertainty Estimation
The next often-cited issue is that of model uncertainty estima-
tion: a model’s ability to specify how certain it is of any predic-
tion it generates. ML models can output probabilities, which are
often interpreted as the model’s confidence level for each class
(e.g., medical condition). Ideally, these probabilities would be
calibrated: given 10 samples for which a model specified a prob-
ability of 0.8 for class c, in expectation, we would assume 8 of them
belong to c. However, this does not hold in modern DL-based
models (20), and thus outputs cannot be directly used to define
classification thresholds based on desired levels of confidence. ML
researchers typically mitigate this limitation by employing a plot of
sensitivity versus the complement of specificity (ROC) to select a
classification probability threshold providing a reasonable trade-
off between these measures for the given task (21). However,
medical applications often operate in error regimes in which
such an analysis misrepresents relevant clinical performance (13).
Worse, a recent meta-analysis in The Lancet found that many AI-
based medical-imaging papers set thresholds arbitrarily to 0.5
without justification (5). Moreover, even when selecting the op-
timal threshold in term of ROC, no guarantees are provided re-
garding the statistical properties of the model’s predictions, such
as confidence intervals or P values. Although it is generally not
possible, in practice, to obtain provable statistical guarantees on
performance (as it requires knowledge of the true data distribu-
tion), adherence to requirements on metrics such as sensitivity or
specificity is nevertheless a critical metric considered in clinical
evaluation during prospective studies. Thus, estimating predictions’
level of uncertainty and quantifying their statistical robustness are
key to cultivating trust among clinicians (1, 19) and may even be
more important than improving accuracy (14). Therefore, we de-
fine this need as the ability of the system to provide 1) an uncer-
tainty estimation for each prediction and 2) uphold out-of-sample
statistical significance requirements specific to the medical task at
hand: for example, a model for screening tasks that reports a
prediction’s SD per person (1) while maintaining a predefined
false-positive rate (2).

Heterogeneousness: Handling Data Containing Unknown
Medical Conditions or Heterogeneous Mixtures of
Conditions
A classification model is typically trained on examples coming from
several known classes (e.g., a specific set of medical conditions), in
which each example is of a specific class. Given a new example, it
assigns a probability to each class, and the class with the highest
probability is chosen. When presented with an example from a

novel class or an example containing more than one known or
unknown class, the model will still output probabilities for the
known ones, and the single highest-scoring class will typically be
chosen without any indication that, in fact, it “doesn’t know” how
to classify such an example. This is highly problematic in medical
applications, in which it is virtually impossible to train on labeled
data with every possible condition in existence or to only encounter
real-world data, which is homogeneous in the classes contained
within. Here, we refer to cases in which a patient exhibits a con-
dition that the system was simply not trained to recognize, even
though other distribution factors may be similar (e.g., the patient
comes from the expected population and the data were recorded in
the expected way and using similar devices). In a survey of intensive
care unit (ICU) and emergency care doctors, practicing clinicians
asserted that a model’s awareness of situations in which it might be
inaccurate or irrelevant is a crucial property in order for it to be
useful (14). Consequently, we state this need as the ability of the
model to 1) clearly convey to the user that it doesn’t know any
correct prediction for a given input and 2) correctly detect known
classes when the input contains a heterogeneous mix of known and
unknown classes.

Relevance: Generalizing while Also Explicitly Identifying
Input Samples for which the Model Is Irrelevant
A crucial question that arises regarding any medical AI system is
under which circumstances can the system’s predictions be trusted
and whether those circumstances are explicitly conveyed (1, 12, 14,
22). An ML model is trained by iteratively improving its fitness,
in terms of some target function, on the available training data.
Meanwhile, the real aim is to obtain beneficial results on all
possible data, coming from an unknown underlying distribution.
The difference, in expectation, between a model’s performance
on its training data and on unseen data is known as the general-
ization gap (23, 24), and the smaller the gap, the better its gener-
alization. Generally, the distribution of the training set may be
different from the underlying data distribution (e.g., due to sampling
bias), and this difference can be a factor contributing to poor gen-
eralization. For example, generalization might suffer when training-
and test-time data come from different subject populations, when
they are recorded using different medical equipment, when the
characteristics of the population change over time, and so on (13).
Another generalization issue arises due to training on data from a
limited set of patients, which may not be representative of the
relevant population. Note that this is in contrast to the hetero-
geneousness need, which referred to cases with similar data dis-
tributions, but in which the model was not trained to recognize
some of the classes that exist in the data. Here, the concern is that
the model will work, for example, on unseen data recorded with
the same equipment but fail to generalize to data recorded with
different equipment. In such cases of inadequate generalization,
the most crucial concern is, again, that there is no way for a
clinician to know whether her model’s prediction is valid for the
given input (1). We argue that an extra precaution should be taken
to address these cases even assuming a system that already ad-
dresses the uncertainty need. The danger is that even if true
confidence intervals are obtained and validated on the test set, in
the wild, samples might yet arrive from different distributions even
compared to the available test set (“unknown unknows”). This is
especially relevant considering that distributions shift over time,
while models are generally not trained continuously (12). Such
shifts will render previously obtained uncertainty estimations or
confidence intervals unreliable, and more so, over time. There-
fore, we define this need as the ability of the model to 1) gener-
alize well across patients and databases while also being able to 2)
declare that both its predictions and their uncertainty estimations
are irrelevant for a given input and should be ignored due to the
input coming from a significantly different data distribution
(i.e., beyond its generalization abilities).
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In the field of cardiology, ECGs are commonly utilized for
diagnostic purposes, therefore making them perfectly placed to
leverage DL algorithms’ capabilities for the analysis of continuous
signals. Applications of ECG analysis include screening and detec-
tion of cardiac arrhythmias, which are abnormal heart rates or
rhythms. These are high-impact and well-studied applications
due to the major global health burden, increased mortality risk,
and health costs (25–28) created by cardiac arrhythmias.
We selected two highly clinically relevant (29–31) ECG analysis

tasks and systematically addressed the unmet needs with multiple
DL-based solutions in order to develop an ECG-analysis system
that is clinically useful while delivering results competitive with the
current state-of-the-art methods. Specifically, we 1) formulated the
issues of clinical relevance in terms of actionable problems to be
solved using modern learning techniques; 2) provided explainability
of the AI system’s decision in terms of the arrythmia-related ECG
morphology via a customly-designed input importance weighting
mechanism, Spectro-Temporal Attention (STA); 3) showed that
our system can uphold statistical-significance requirements and
convey confidence levels by incorporating an uncertainty-estimation
mechanism directly into it; 4) provided the system with a natural
way of outputting any number of known class labels including zero,
thus handling inputs coming from unknown classes or even a het-
erogeneous mix of classes; and 5) supplied an indicator for irrele-
vance of the system’s output in cases of distribution shift induced by
utilizing cross-datasets generalization as an intrinsic training objec-
tive. We validate our system in a retrospective clinical-screening
setting, enforcing an evaluation regime that closely mimics the
challenges associated with medical data, such as low train-test
samples ratios, data from various populations or recorded with
different equipment, data containing more than one medical
condition, and other challenges.

Results
Clinical Applications and Approach Overview. In order to assess the
benefit of addressing each unmet need and demonstrate its im-
portance for integrating AI into the practice of cardiology, we
focus on two ECG-analysis tasks. Firstly, classification of cardiac
arrhythmias in heterogeneous-rhythm segments. We trained our
model to detect any combination of 10 different prevalent rhythm
types from either one- or two-lead ECG segments containing
multiple heart beats, which may include a heterogeneous mix of
any known or unknown rhythm types and noise. Specifically, the
model is tasked with providing binary classification for each rhythm
type in each input ECG segment. The second task is detection of
whether an underlying pathology is present in a patient, from ECG
segments containing regular morphology (i.e., segments in which it
is not visible due to the intermittent nature of arrhythmias), thus
detecting patients suffering from some known pathologies, which
were classified as normal sinus rhythm (NSR) segments by a human
cardiologist. To this end, when creating our training data, we make
a class distinction between NSR segments from healthy subjects,
which we denote simply as NSR, and segments labeled as NSR by a
cardiologist but coming from patients with some underlying car-
diopathology, which we denote as latent-pathology NSR (LP-NSR).
The purpose of this distinction is to train the model to discriminate
between these cases, which were indistinguishable to the human
cardiologist annotator. The choice of analyzing one or two leads
was based on our insistence to work with publicly available data
only. Technically, the model can analyze any number of leads, in-
cluding, but not limited to, the usual 12.
Note that, with the aim of large-scale ECG-based screening in

mind, we do not attempt to classify which underlying arrhythmia
is present in LP-NSR segments, but to indicate whether such a seg-
ment originated in a patient suffering from any arrhythmia. These
tasks were chosen because they model what might take place in a
clinical environment while a subject is connected to ECG recording
equipment for a short duration (minutes). Since cardiac arrhythmias

can be highly intermittent, during this time, the ECG may or may
not show any known arrhythmias, show any combination of known
ones, or show a completely normal rhythm (NSR). Additionally,
any number of noise artifacts may be present due to movement
or other factors. Thus, the ability of the model to handle hetero-
geneous and noisy segments is imperative, and the ability to classify
a seemingly normal NSR segment as belonging to a subject with an
underlying arrhythmia could significantly improve early screening
applications (32).
We simulated a clinical setting in both our training and eval-

uation schemes. Mainly, we cannot assume any prior knowledge
on a sample’s content; samples will be varied, both in terms of
population and recording equipment, and, finally, the inference
population is larger than the one used for training. To this end,
we incorporated the following guidelines into our methodology: 1)
We use a training set substantially smaller than the test set; 2)
We do not discard ECG segments for any reason including but not
limited to the presence of multiple classes, significant levels of noise,
or other characteristics; 3) We include varied data from several
devices and population groups in our test set, some of which are
deliberately not represented in the training set; 4) The training and
test sets are completely disjoint patientwise. See SI Appendix, Tables
S1 and S2 for the full specifications of the training and test data.
Our model’s inputs are segments extracted from ECG recordings
along with a set of rhythm labels containing the types of rhythms
within that segment (see Materials and Methods).
We train on half the patients from three openly available

datasets from PhysioNet (33): the Normal Sinus Rhythm (33),
Long-Term Atrial Fibrillation (34), and MIT-BIH Arrhythmia
databases. We define our test set using the remaining patients
from these and two additional datasets, the MIT-BIH Atrial Fi-
brillation (35) and the Telemetric and Holter ECG Warehouse
(THEW) (36) databases, which are not represented in the training
data. Furthermore, we define an extended test set, which addi-
tionally also contains the test set of Hannun et al. (10) and the
Computers in Cardiology (CinC) 2017 challenge dataset (37). In
total, the extended test set includes 6,584 patients from seven
datasets. The train and test set contain data with two ECG leads,
while the extended test set contains single-lead data. These data-
sets all contain ECG data of widely varying duration, with rhythm
annotations from expert cardiologists. Moreover, they are highly
diverse in terms of subject demographics, recording devices used,
rhythm types, and in terms of the imbalances between the different
rhythm types. These data contain substantial amounts of missing or
noisy segments, which correspond to locations where data were too
noisy for a cardiologist to annotate, and which we deliberately did
not remove (SI Appendix, Table S3).
Fig. 1 presents a bird’s-eye view of our proposed framework.

Our system is based on a temporal convolution neural-network
architecture, which is effective at learning long-range dependencies
in time-series data (38). With cardiological tasks in mind, we make
some important adaptations and additions to this basic architec-
ture, aimed at addressing each unmet need. Firstly, to gain clini-
cally meaningful explanations, we add a custom input importance
weighting mechanism, inspired by Vaswani et al. (39), called STA.
STA is designed to exploit both spectral and temporal information,
allowing us to pinpoint periodic morphological structures in the
input ECG segments–influencing model’s decisions the most. Sec-
ondly, we employ a multiclassifier architecture in which a separate
classifier, subsequently denoted as a “head,” is trained per class on
shared features extracted by the neural network, in contrast to the
standard approach, in which a single multiclass classifier is applied
to the learned features. This aids in addressing two of the needs: 1)
It allows the model to naturally handle unknown classes by repre-
senting such cases as negative classification by all heads, and, fur-
thermore, it allows the model to simultaneously classify a single input
into more than one of the possible classes; 2) It enables defining
different statistical-performance requirements per class through
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control of different per-class classification thresholds. Thirdly,
for improving cross-patient generalization, we add a patient clas-
sifier to incorporate a surrogate task, which prevents the model
from learning patient-specific features (see ablation study in SI
Appendix, Table S5). Moreover, we introduce an input-relevance
indicator by incorporating a dataset classifier, flagging out-of-
distribution samples on which the model should not be trusted
regardless of its confidence. Finally, we employ a unique classification-
threshold selection scheme based on a patientwise disjoint
validation set.

Explainability Based on ECG Morphology. Based on our STA layer
(see Materials and Methods), we derive elementwise attention
masks indicating the relative importance of each part of the ECG-
input signal to the model’s output. Using the STA mechanism, we
provide a morphology-based measure of explainability for 10 dif-
ferent rhythm types in both temporal and spectral domains and
across any required temporal length. As can be seen in Fig. 2, our
system is able to produce justification for the model decisions,
expressed as patterns in the signal morphology, similar to how
cardiologists analyze ECG. This type of domain-specific explain-
ability is a desirable attribute of medical AI systems (14, 40). Fig. 2A
displays an ECG sample with an NSR from a patient with no un-
derlying cardiopathology. The model attends each lead in a some-
what different manner, focusing largely on the P and T waves in the
upper lead and on the QRS complexes and T waves in the lower
lead (blue arrows). Note that a normal morphology of these
structures is an indicator of NSR (41).
Fig. 2B also displays an ECG sample with an NSR; however,

this time, it is recorded from a patient with a confirmed underlying
cardiological pathology. In this case, it is apparent that the lower
lead contains noise (red arrow) and no relevant information. Im-
portantly, even though the model was not trained to classify noisy
samples, the lower lead’s attention score shows that the model

mostly ignores this lead. This demonstrates that the model with
STA is able to detect and ignore ECG segments without viable
information content. On the other hand, in contrast to Fig. 2A, the
upper lead is now endowed with high attention at all major ECG
structures (i.e., P wave, T wave, and QRS complexes [blue arrows]).
We thus conjecture that the model is able to adapt its information-
extraction method in accordance to the specific input. Fig. 2C
displays an ECG sample with an atrial fibrillation (AF) rhythm.
Again, the lower lead is of lower quality, and the model has learned
to assign it lower attention. In the upper lead, it can be clearly seen
that high attention is consistently assigned to the expected location
of P waves (black arrows), which are missing due to the AF. Such
behavior is in exact accordance with the cardiological literature and
is consistent with how a cardiologist would have explained an AF
classification decision (41).
Fig. 2D displays an ECG sample with a ventricular tachycardia

(VT) rhythm. VT is defined as a heart rhythm higher than 120
beats per minute and is characterized by wide QRS complexes (41).
Both indicators can be determined from the duration and location
of the QRS complexes. In this case, we can see that the highest
attention in both leads is assigned to the QRS complex peaks, as
well as to their width, by attending their starting and ending loca-
tions (black arrows). Overall, Fig. 2 illustrates how our model is
able to consistently give morphological evidence supporting its
decisions in a way that is in accordance with the current clinical
literature, an ability which was deemed vital for medical AI by
clinicians (14).
In addition to these representative examples, we further vali-

dated the efficacy of the STA algorithm in a quantitative way on
the entire test set. SI Appendix, Fig. S1 visualizes the median nor-
malized attention weights produced by STA on five different sub-
morphologies per rhythm class (see methodology in Materials and
Methods). Moreover, we compared our method to a general-purpose
importance-weighting approach, gradient-weighted class activation

B

A

C

D
E

Fig. 1. Schematic of our framework. (A) Multiple ECG leads, possibly containing a mix of known and unknown rhythm types, are provided as inputs for the
model. (B) Our custom STA layer is applied, producing input importance maps highlighting the regions of input contributing the most to the prediction. (C) A
deep neural network analyzes the attended inputs. (D) Separate binary classifiers provide the probability of each rhythm type; different classification
thresholds are used for different rhythms based on statistical significance requirements together with a distribution indicator function that expresses whether
the model’s predictions are relevant for the given input. (E) Finally, a clinician chooses whether to trust the model based on the indicator value and uses the
rhythm predictions combined with the STA-highlighted regions to make an AI-supported clinical decision. Note that the signals portrayed are only schematic
and are not physiological recordings.
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mapping (Grad-CAM) (42), which was recently employed for
explainability in ECG (43). The comparison was performed on
the test set while normalizing the total attention scores of both
methods to the same scale (see Materials and Methods). The
results (SI Appendix, Fig. S2 and Table S4) show that STA gives
substantially more attention to clinically salient features, namely
specific submorphological segments. STA scores correspond better
to a clinically related submorphology for the given rhythm. For
instance, in AF and atrial bigeminy, STA gives higher scores to the
P wave and PR interval compared to Grad-CAM. For supraven-
tricular tachycardia and VT, which are associated with wide QRS
complexes, and for ventricular trigeminy, associated with three
consecutive QRS complexed, STA gives a higher attention score to
the QRS complex compared to Grad-CAM.

Uncertainty Estimation and Statistical Performance. In order to ob-
tain uncertainty estimates, we applied Monte-Carlo (MC) dropout,
proposed by Gal et al. (44). Dropout stochastically disables some
percentage of activations of a neural network and is usually applied
while training as a form of regularization (45). Here, we use it also
during inference and apply the model to the same input multiple
times with different dropped activations. This effectively creates a
pseudoensemble of different models and provides multiple pre-
dictions for each input sample. Gal et al. proved a theoretical link
between MC dropout and Gaussian processes (44), showing that
the outputs of this pseudoensemble are normally distributed. There-
fore, we calculate the SD, per sample and output class, which pro-
vides an uncertainty estimate for each prediction. By coupling
this method with our multihead classification architecture, we
gain separate uncertainty measures for the detection of each
rhythm class.

Another crucial aspect relating to uncertainty of predictions is
upholding statistical performance requirements: for example, a
maximal allowed false-positive rate. Statistical performance de-
pends on the selection of the probability thresholds for positive
predictions, which are traditionally chosen by employing ROC
analysis for each class. ROC curves describe the relationship be-
tween the true-positive rate (TPR), which, in statistical hypothesis-
testing terminology, is the statistical power or the complement of
the type-II error rate (β) and the false-positive rate (FPR), also
known as the type-I error rate (α) or significance level, for different
threshold values. Here, our aim was to uphold robust requirements
for the type-I error rate in unseen data. To that end, we opted to
compute a classification threshold based on a target type-I error
rate on a set of validation samples and then compute type-I error
and the statistical power at the calculated threshold on a test set
of disjoint patients. For the threshold selection, we created the
validation set by randomly sampling 20% from the original test
set with stratification. We emphasize that no learning steps were
performed with the model using the validation set and that only
the remaining 80% of the test set were used for the statistical
performance evaluation. Table 1 summarizes the statistical per-
formance over both the validation and test sets. We set the type-I
error requirement on the validation set to be α ≤0.01. Notably,
for all classes, the type-I errors on the test set were either equal
to or lower than the target. Furthermore, the system exhibits sur-
prisingly similar statistical power per rhythm between the validation
and test sets. These results are likely due to the combination of
approaches. The use of separate binary heads together with a
pseudoensemble (via MC dropout) produces stable distributions of
output probabilities, while performing the threshold selection on a
disjoint validation set facilitates generalization of the statistical

B

A

C

D

Fig. 2. Temporal attention maps generated by the model for four test set samples, each containing two ECG leads and belonging to a different patient. For
clarity, only 9 s are displayed from each sample. (A) NSR from a healthy subject with no underlying cardiac pathology. (B) NSR from a patient with an existing
underlying cardiac pathology (LP-NSR). (C) AF rhythm. (D) VT rhythm. Blue arrows denote morphologically normal features in normal sinus segments, red
arrows denote noise, and black arrows denote abnormal features in ECG segments related to an arrhythmia. These examples showcase the ability of the STA
mechanism to detect and highlight periodic components in the input due to the way it is calculated from its spectral representation. Therefore, note that the
arrows shown were chosen to present a few exemplary features of interest; they do not represent all relevant high-attention morphological features.
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performance to unseen data. For further details, see Statistical
Analysis.

Handling Unknown Rhythm Types and Multirhythm Segments. An
immediate result of using separate binary-classification heads for
each rhythm type is the ability to systematically deal with unknown
classes. By decoupling the prediction task into multiple binary
heads, we give the model an intrinsic way to designate an unknown
class by outputting a negative prediction in all heads. Moreover,
separate classification heads naturally endow our model with the
capacity to detect a set of different rhythm types in a single
ECG segment.
As shown in Fig. 3, this allows us to train our model with mul-

tiple true labels for each segment and prevents the need for a
heuristic approach to determine a single-class label in cases in
which multiple rhythms are present (e.g., ref. 46), or worse, to dis-
card all nonhomogeneous segments. Fig. 3 displays four exemplary
cases. The first is a sample with a single rhythm type, which the
model was trained on. This is the main case considered by the ma-
jority of prior works. The second is a sample containing two rhythm
types, both of which are known to the model. As can be seen, a
clinician can be made aware of the presence of both rhythm types
in the ECG, since the probability estimations of both rhythms
crossed the given threshold. The ability to simultaneously rec-
ognize two different classes in the same ECG segment is, by
itself, a critical requirement for such systems that is not always
addressed, since usually a single input segment is classified to
only one of several possible classes (see Discussion). The third is
a sample containing two rhythm types, one known to the model
and the other an unknown rhythm. Although the model obviously
cannot recognize an unknown rhythm, it is nevertheless successful
in recognizing the known one despite the presence of the other.
The fourth is a sample containing only an unknown rhythm type. A
traditional classification model would not recognize it is facing such
a scenario and would mistakenly output a prediction of one of the
known classes. In contrast, our framework naturally handles this
situation and indeed outputs probability estimations that are all
below the given threshold, causing the predictions for all rhythms
to be negative. Hence, the model conveys two crucial pieces of
information to the clinician: 1) that the sample in question does not
belong to a healthy individual, because there are no positive pre-
dictions for either of the NSRs; and 2) the model is unfamiliar with
whatever rhythm types are present.
In this way, the system avoids producing misleading results on

rhythm classes on which the model was not trained and provides
transparency about its limitations. Note that the selected thresholds

account for the uncertainty of the model regarding predictions
for each rhythm type as well as the statistical significance require-
ments as determined by the clinician. They are then used jointly
with the SD of each specific prediction (obtained from our pseu-
doensemble). The clinician can thus determine not only whether the
prediction has crossed a threshold and is positive for the corre-
sponding rhythm type but also the system’s confidence in classifying
that specific sample as positive or negative.

Generalizing across Patients and Detecting Data-Distribution Shift.
The distribution of medical data observed by an AI model depends
on the patients being recorded, the medical equipment used, data
storage formats, and possibly other factors. Medical AI systems
cannot feasibly be trained with patient data from every conceivable
source and must therefore be able to generalize. Our framework is
designed for cross-patient generalization by employing regulariza-
tion through an auxiliary loss function (see Materials and Methods)
via a domain-adversarial approach (47, 48). Interpatient general-
ization is improved when the model is trained to extract features
that allow rhythm classification but not patient identification. Our
results show that learning of patient-specific features is reduced,
and thus generalization to new patients is improved, due to this
approach (SI Appendix, Table S5).
In order to further address the relevance need, we added a

dataset-classification layer in order to obtain an indicator func-
tion for out-of-distribution samples. In this case, we allow that
the model may exploit dataset-specific features so that the indicator
enables a clinician to ignore the model if the input is substantially
different from samples in the training distribution (e.g., due to
population features changing over time). The dataset classifier is
optimized separately so as not to affect the feature extraction (see
Materials and Methods). In order to assess cross-dataset general-
ization capabilities in a realistic way, our test set deliberately in-
cludes data from databases on which we do not train and which
were recorded with different types of ECG equipment (SI Appen-
dix, Table S1). Although the known and unknown dataset distri-
butions are not completely separated, likely due to the limited
capacity of this layer, there is a considerable difference between the
two (SI Appendix, Fig. S3). The system can utilize this difference for
classifying samples as either known or unknown (i.e., as suitable or
unsuitable for analysis by the system). This allows clinicians to set a
reliability threshold (i.e., an α below which they are not willing to
trust the system). For example, for α = 0.05, we found that the
indicator function includes 40% of samples from known datasets
(on which the model was trained and evaluated on disjoint patient
sets) and rejects 95% of samples from unknown datasets (on which
the model was only evaluated). Both generalization tasks are pur-
sued simultaneously during training.
We performed a comparative analysis to evaluate the impor-

tance of employing the indicator function at inference time. The
comparison is based on the samemethodology of a simulated clinical
trial presented in the next section. The results show that when dis-
regarding the indicator function, we observe both a noticeable de-
crease in overall performance (Table 2 and SI Appendix, Table S6)
and, more importantly, a failure to uphold the specified statistical-
significance requirement (Table 3 and SI Appendix, Table S7).

Performance in a Clinical Setting. As elaborated above, the ability
of a model to demonstrably uphold statistical performance require-
ments determined in advance and according to medical consider-
ations is crucial for clinical adoption of AI systems. Therefore, care
must be taken when selecting classification thresholds in order to
meet such requirements. We opted to evaluate our model under two
threshold selection schemes: 1) the ROC optimization scheme
(denoted as ROC): Classification thresholds are selected by com-
puting the ROC curve (TPR versus FPR) and choosing a threshold
corresponding to the point closest to (0, 1). This scheme is widely
used in ML and medical applications. 2) The FPR-constraints

Table 1. Statistical performance on the validation and test sets

Rhythm class

Validation Test

Samples α 1 − β Samples α 1 − β

NSR 44,740 0.01 0.81 171,029 0.0006 0.80
LP-NSR 94,092 0.01 0.53 360,432 0 0.53
Atrial fibrillation 142,717 0.01 0.57 545,323 0.01 0.56
Supraventricular tachycardia 4,182 0.01 0.86 16,063 0.009 0.85
Ventricular tachycardia 1,501 0.01 0.97 5,806 0.009 0.96
Ventricular bigeminy 5,110 0.01 0.98 18,942 0.01 0.98
Ventricular trigeminy 1,923 0.01 0.89 7,067 0.01 0.90
Idioventricular rhythm 10 0.01 0.11 56 0.0001 0.01
Atrial bigeminy 5,079 0.01 0.80 19,881 0.009 0.80
Sinus bradycardia 12,186 0.01 0.91 46,636 0.01 0.91

Threshold selection was based on a significance requirement α ≤ 0.01 on
the validation set. α denotes type-I error rate, and 1 − β denotes statistical
power. The results show that the significance requirement was met on the
test set, even though threshold selection was based on the validation set,
with only a minor sacrifice of statistical power in most cases.

6 of 12 | PNAS Elul et al.
https://doi.org/10.1073/pnas.2020620118 Meeting the unmet needs of clinicians from AI systems showcased for cardiology with

deep-learning–based ECG analysis

D
ow

nl
oa

de
d 

at
 E

ly
ac

ha
r 

C
en

tr
al

 L
ib

ra
ry

 o
n 

Ju
ne

 8
, 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020620118


scheme (denoted as FPR): Classification thresholds were selected
to uphold constraints on type-I errors (FPRs), which correspond to
significance levels. We required a significance level of α = 10−4 for
all rhythm classification heads and α = 0.05 for the indicator
function. In a clinical setting, these numbers would be based on
medical considerations, possibly different per rhythm type. Im-
portantly, for both schemes, the thresholds were calculated using
the validation set alone. The motivation for evaluating the system
under these two schemes is to study their effect on its statistical
performance. While the first scheme (ROC) is most widely employed
in the literature, the second scheme (FPR) is arguably more relevant
for healthcare providers.
Following threshold calculation, we evaluated all test-set sam-

ples under the chosen thresholds from each scheme. This step is
akin to a prospective clinical study, which would be performed on
the fully trained ML system with predetermined thresholds prior to
its deployment. Results are reported in Table 2 for the known test
set, and in SI Appendix, Table S8 for the extended test set. The
requirement of α ≤ 0.05 for the indicator function results in a
significant number of samples being flagged as unsuitable for
analysis, resulting in a lower number of analyzed samples per rhythm
under the FPR scheme. However, this showcases the ability of our
approach to recognize samples that are unsuitable for analysis due to
possible distribution shift between the training and test sets. This is in
contrast to traditional ML systems, which have no way of detecting
such a shift. Based on the consistency of the statistical results
reported in Table 1 on both the validation and test sets, we
conclude that the results in Table 2 likely reflect the system’s
would-be real-world performance.
As a concrete example of the importance of threshold selec-

tion schemes, we consider a screening task, in which extremely
small false-positive rates are necessary due to the desire to apply
the screening system to a population as large as possible. We
performed threshold selection on the same validation set with a
requirement of α ≤ 10 − 4. The results, showing adherence to the

statistical requirements on the test set, are presented in Table 3
and on the extended test set in SI Appendix, Table S9. Also con-
sidering Table 2, the results show how, despite seemingly superior
performance, the model with the ROC scheme generally fails to
uphold the prespecified statistical constraints, while the model
with the FPR scheme successfully upholds them for all but one
rhythm type.

Identification of Background Arrhythmias from NSR Segments. Our
second chosen task was to differentiate between two types of
ECG segments labeled as morphologically normal by a cardiol-
ogist: segments from healthy subjects (NSR) and segments from
subjects suffering from a background pathology that does not
manifest itself in the specific segment (LP-NSR). Due to the inter-
mittent nature of arrhythmic events, they do not appear in all seg-
ments recorded in cardiac patients, and thus such segments are
(correctly) labeled as NSR by human annotators. Moreover, be-
cause LP-NSR segments are, by definition, segments labeled as
normal by cardiologists, this is an example of a task for which the
AI system is expected to perform a feat infeasible for a human
doctor. We emphasize that the point is to detect whether some
pathology may exist in a seemingly normal segment, not which
pathology it is. Note also that other ECG-classification works gen-
erally do not make any distinction among NSR-labeled samples. For
this task, samples were filtered based on the indicator function’s
score using a naive threshold of 0.5.
We were able to clearly show that 1) almost no LP-NSR samples

were classified as NSR (specificity >0.999) and 2) LP-NSR samples
are classified overwhelmingly correctly (accuracy is 0.96). Although
NSR samples were sometimes classified as LP-NSR (accuracy is
0.70), the results show that the model has substantial predictive
power in this task, which, by definition, human cardiologists could
not perform. Moreover, the results demonstrate the immense po-
tential of this task for automated population screening, since only
three samples from sick subjects (LP-NSR) out of 360,478 were

BA

C D

Fig. 3. Multiclass prediction. An input sample to the model is a 30- or 60-s ECG segment, which may simultaneously contain zero or more known types of ECG
rhythms as well as unknown types. All the known rhythm types present in the same sample comprise the set of its ground-truth labels. The model outputs a
likelihood estimation for each known rhythm type (blue or red bars) along with an uncertainty estimation, which is equivalent to 1 SD in the prediction
probability (vertical black lines). A positive prediction for a specific rhythm (filled blue bar) is produced if its likelihood value crosses a predetermined
threshold, and a negative prediction is produced otherwise (empty red bar). For visualization only, the threshold was set to the same value of 0.9 for all
rhythm types (horizontal black line), though it should generally be chosen per rhythm type according to statistical requirements. Four samples are shown
containing one or more known or unknown rhythm types: (A) sample containing only one known rhythm (AF); (B) sample containing two known rhythms
(LP-NSR and ventricular bigeminy); (C) sample containing one known (AF) and one unknown (Paced) rhythm, hence there is no output for the unknown type;
and (D) sample with a single unknown rhythm type (Paced). supraventricular tachycardia, SVT; ventricular bigeminy, Vent. Big.; ventricular trigeminy, Vent.
Trig.; idioventricular rhythm, IR; atrial bigeminy, At. Big.; sinus bradycardia, Brady.
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misclassified as healthy (NSR). The complete results are avail-
able in SI Appendix, Table S10.

Discussion
AI has the potential to deliver radical breakthroughs in medical
applications. However, the question of how to bridge the gaps
between the promising results presented in AI research papers and
the real-world clinical setting must be addressed in order to reap
any potential benefits. These gaps, which we have formulated as
the unmet needs of clinicians from AI systems, pertain to multiple
different issues, which must all be addressed together in order to
achieve a viable system that can be deployed in clinical practice.
We defined each of the needs based on concerns raised by clini-
cians and in a way actionable by AI researchers. We then dem-
onstrated this actionability by addressing each unmet need for
high-impact clinical tasks in AI-based ECG analysis.

Explainability. We showed that interpretability, at least in the sense
defined by clinicians, can indeed be engineered into a DL model
for ECG-analysis tasks. Our STA mechanism was specifically
designed to detect periodic components and then highlight them in
the temporal domain. We have shown that it provides a visualization
of the relative importance of each part of an ECG segment for the
final model decision. Thus, interpretability is provided in terms of
the morphological features present in each specific ECG segment,
which corresponds to the way cardiologists are trained to analyze
ECG and explain their judgments. For example, a cardiologist may

point to abnormal or missing P waves in a patient’s ECG in support
of a diagnosis of AF. Likewise, our STA mechanism highlights the
most relevant ECG regions for its decision (Fig. 2).
In other cases, the regions highlighted by the STA can shed

light on subtle morphological details a human cardiologist is likely
to miss. This was demonstrated by our second task, in which un-
derlying cardiopathology was successfully detected in segments that
had normal morphology according to a cardiologist (LP-NSR). We
do not claim that highlighting morphological details should provide
a cardiologist with novel clinical insight regarding a pathology,
especially when it is intermittent and does not manifest in the
observed ECG segment. However, to the extent that useful mor-
phological features exist in a specific segment, the goal of explain-
ability is achieved because the evidence for the model’s results is
communicated in a way a cardiologist can reason about. Moreover,
our system was able to produce explanations for its decision, which
often conformed to established medical knowledge about morpho-
logical features of specific arrhythmias. In a recent work published in
The Lancet (32), researchers from Mayo Clinic demonstrated an
ability to detect the presence of AF in patients by analyzing NSR
segments of ECG, thus establishing the clinical viability of detecting
pathology from morphologically normal segments. Although our
system does not attempt to classify which underlying arrhythmia is
present from NSR segments (unlike in ref. 32), it does indicate
whether an NSR segment is abnormal with respect to multiple other
rhythm types. Consequently, it is arguably more useful for large-scale
automated ECG-based screening.

Table 2. General performance on the test set using threshold selection based on ROC
optimization (ROC) or on a significance-level requirement (FPR) of α ≤ 10−4

Rhythm class

Analyzed
samples Accuracy AUC Specificity Sensitivity Precision F1 score

ROC FPR ROC FPR ROC FPR ROC FPR ROC FPR ROC FPR ROC FPR

NSR 170,779 20,823 0.96 0.99 0.89 0.93 0.99 1.0 0.78 0.99 0.99 0.87 0.87 0.93
LP-NSR 360,309 87,880 0.76 0.65 0.78 0.73 0.69 0.59 0.89 0.88 0.59 0.35 0.71 0.50
AF 545,430 321,451 0.81 0.61 0.84 0.73 0.96 0.99 0.66 0.48 0.95 0.99 0.78 0.64
SVT 16,024 578 0.99 0.99 0.91 0.95 0.99 0.99 0.66 0.80 0.85 0.86 0.74 0.83
VT 5,787 146 0.99 1.0 0.90 0.95 0.99 1.0 0.80 0.88 0.85 1.0 0.83 0.93
Vent. big. 19,044 5,283 0.99 0.99 0.95 0.99 0.99 0.99 0.90 0.99 0.80 0.90 0.90 0.90
Vent. trig. 7,141 456 0.99 0.99 0.90 0.93 0.99 1.0 0.76 0.83 0.83 0.96 0.79 0.89
IR 54 12 1.0 1.0 0.52 0.50 1.0 1.0 0.02 0.0 1.0 0.0 0.03 0.0
At. big. 19,736 877 0.99 0.99 0.89 0.97 0.99 0.99 0.66 0.82 0.87 0.74 0.75 0.78
Brady. 46,832 8,873 0.99 0.99 0.92 0.97 0.99 0.99 0.86 0.95 0.88 0.94 0.87 0.94

Note that the exact values presented are not the major point of interest. Instead, we emphasize the
substantial difference between the ROC and FPR schemes, demonstrating the need to apply a proper threshold
selection scheme in order for the system to adhere to required statistical constraints. Although naively
optimizing on the ROC appears to yield superior performance in some cases based on common metrics, the FPR-
based threshold selected using the validation set obtains comparable results while also adhering to statistical
requirements on the test set (Table 3). AUC, area under the ROC curve; SVT, supraventricular tachycardia; Vent.
big, ventricular bigeminy; Vent. trig., ventricular trigeminy; IR, idioventricular rhythm; At. big., atrial bigeminy;
Brady., sinus bradycardia.

Table 3. False-positive rates on the test set using threshold selection based on ROC
optimization (ROC) or on a significance-level requirement (FPR) of α ≤ 10−4

Scheme NSR LP-NSR AF SVT VT Vent. big. Vent. trig IR At. big. Brady.

ROC 10−4 0.31 0.03 2 · 10−3 7 · 10−4 2 · 10−3 10−3 0 10−3 5 · 10−3

FPR 10−5 0.41 10−5 5·10−5 10−5 4 · 10−5 6·10−5 0 10−5 10−5

Thresholds were selected based solely on a validation-set (disjoint patient-wise from the train set). The model
with ROC scheme fails to uphold the required FPR for all but one rhythm (IR), while the model with the FPR
scheme successfully upholds the requirement for all rhythms but LP-NSR, which the model occasionally confuses
with NSR (recall these are morphologically identical for cardiologists). A failure to uphold the statistical require-
ment is highlighted in red. SVT, supraventricular tachycardia; Vent. big, ventricular bigeminy; Vent. trig., ven-
tricular trigeminy; IR, idioventricular rhythm; At. big., atrial bigeminy; Brady., sinus bradycardia.
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Previous works, such as Mousavi et al. (49) and Yao et al. (50),
have applied attention in the temporal domain in order to gain a
measure of explainability in morphological terms. However, these
works have not been able to show clear correlation between known
morphological features and the inputs on which their models relied
the most in their decisions. Other recent works have shown more
success in providing explainability for DL-based ECG models
with emphasis on clinical relevance. Raghunath et al. (43) used a
general-purpose method, which produces visual explanation in
convolutional neural networks (CNN) models, Grad-CAM (42),
and applied it to ECG analysis. Meira et al. (51) generated textual
explanations for an existing model based on the duration of sub-
morphological features known to clinicians, such as P waves, QRS
complexes, etc. We combined ideas from both of these works
and compared our STA algorithm to Grad-CAM for each sub-
morphology and rhythm type. Our comparison is based on the
entire test set, not on representative examples, and shows the
median of normalized attention scores generated by each
method (SI Appendix, Fig. S2 and Table S4). The results indicate
a substantial difference in distribution of the attention scores to
submorphologies between these methods. The STA median and
maximal normalized scores are consistently higher for sub-
morphologies, which are considered to be clinically salient and
therefore provide better explainability. In contrast, the Grad-CAM
approach places more of its attention on parts of the ECG outside
of these submorphologies. Furthermore, the STA scheme provides
per-lead attention scores (SI Appendix, Fig. S1), while Grad-CAM
does not. Considering that cardiologists and some DL-based sys-
tems (52) use 12-lead ECGs to inspect different morphological
features, the importance of per-lead explanation provides another
advantage of STA. These results highlight the explainability benefits
of designing an attention mechanism explicitly tailored to ECG.
Importantly, this work reports a quantitative comparison between
two different explainability methods for ECG on the grounds of
best adherence to clinically relevant morphological features, a
comparison which is usually not provided.

Uncertainty Estimation. We have incorporated uncertainty estima-
tion directly into our model inference stage. In a clinical setting,
this allows us to simulate a model ensemble for each sample to be
classified and thus calculate the SD of the predictions based on the
ensemble outputs as an uncertainty measure. We press further with
this approach and show how we can allow a clinician to select the
classification threshold separately for each arrhythmia type in a
statistically rigorous way based on the required significance level
(Table 1). Furthermore, this work shows a DL-based medical AI
system that is able to uphold predetermined statistical constraints
on unseen data, a critical quality, which is largely missing from
most other similar works. Thus, the proposed threshold-selection
scheme can be employed by clinicians using DL-based systems
under rigorous statistical requirements specified by medical needs.
Many prior works specifically address the issue of estimating pre-
dictions’ uncertainty. In addition to the approach of Gal et al. (44),
which we adopted, a prominent and more recent example is Ro-
mano et al. (53), in which the authors were able to obtain theo-
retically guaranteed confidence intervals without access to the true
underlying distribution. Although remarkable, these guarantees
stem from an assumption regarding the interchangeability of
samples from the train and test sets. In most medical tasks, how-
ever, samples from patients in the train set are differently distrib-
uted than samples from patients in the test set and different still
from the ones later encountered in the wild; thus, the assumption
does not hold in practice.

Heterogeneousness. We have shown that our multihead architec-
ture inherently solves this issue by simply providing the model with
a natural way to not apply any classification to an ECG segment.
Indeed, our results show that the model was able to achieve this

[e.g., for segments that only contained unknown rhythm types
(Fig. 3)]. Other approaches for detecting unknown classes exist
in the literature, such as adding a “background” class, training a
separate classifier to detect unknown classes (54), or defining
loss functions that allow detection of an unknown class based on
thresholding the maximal softmax output (55). These approaches
are largely orthogonal and can be incorporated with our approach.
We opted for the multihead design in this regard because it also
allowed us to naturally frame our classification tasks as a set-level
operation (i.e., we detect the set of all rhythm types in an ECG
segment instead of classifying each input as only one of the possible
rhythms). In contrast, in many other works dealing with detection
of arrhythmias such as AF (46, 56, 57) and other pathological
conditions such as congestive heart failure (58) or myocardial in-
farction (59), the task is framed as a binary classification: either the
analyzed segment is classified with the specified condition or not.
We argue that such a binary framing is inherently unsuitable for
clinical applications because it does not allow the model any way
to proclaim its inadequacy in case the data do not belong to either
the positive or negative class it was trained with or to account for
samples displaying a mixture of conditions. In a survey of ICU and
emergency care doctors, practicing clinicians asserted that a mod-
el’s awareness of situations in which it might be inaccurate or ir-
relevant is a crucial property in order for it to be useful (14). We
believe that by combining our model’s ability to provide an un-
certainty estimation for each prediction, its ability to not classify the
segment as any known class, and its ability to declare its output as
invalid via the indicator function, we have thoroughly addressed
the concerns raised by the clinicians from this survey.

Relevance. Our solution addresses the issue of cross-patient
generalization as well as the problem of input distribution shift
due to factors such as different demographics or medical equip-
ment. We address these issues separately and with a different ap-
proach. By combining domain-adversarial training, which considers
the patients as domains with an indicator function for the data
distribution, we substantially mitigate issues of generalization to
new patients (SI Appendix, Table S5) and datasets. In our simu-
lated clinical setting, our model was able to handle data from pa-
tients it was not trained on (the common case), and the distribution
indicator function could notify the clinician in case the model’s
outputs are not usable in this case, thereby significantly improving
the clinical viability of the system (SI Appendix, Tables S6 and
S7). In this regard, we wish to note the inherent trade-off between
training a decoupled dataset classifier (our indicator function) ver-
sus adversarially training it (as with the patients’ classifier). While
adversarial training will optimally result in dataset-agnostic learned
features and thus will have likely improved generalization, it will
also hinder any capability to judge whether samples originated from
a known distribution seen at training. However, instead of opting
for better generalization in the dataset case, our method provides a
quantifiable metric by which to judge whether a sample is suitable
for processing in the first place. This is akin to the concept known as
selective prediction, in which a separate classifier is used in order to
decide whether the main classifier’s output should be considered for
an input. However, in contrast to many works in this area, we train
the indicator function together with the model. A notable recent
example of this approach is that by Geifman et al. (54), which also
incorporates a custom loss function to train the indicator function.
We opted for a simplified approach, in which we train the indicator
as a classifier for different domains and control the coverage using
the classification threshold (SI Appendix, Fig. S3). Based on opinion
papers, such as those by Rajkomar et al. and Tonekaboni et al.
(1, 14, 19), we deem the benefits of such a function outweigh
those of improved generalization in a clinical setting. Other prom-
inent journal publications, such as those by Hannun et al. (10) or
Attia et al. (60), claim the clinical viability of their DL-based ECG-
analysis solutions. However, these authors do not explicitly attempt

Elul et al. PNAS | 9 of 12
Meeting the unmet needs of clinicians from AI systems showcased for cardiology with
deep-learning–based ECG analysis

https://doi.org/10.1073/pnas.2020620118

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 E

ly
ac

ha
r 

C
en

tr
al

 L
ib

ra
ry

 o
n 

Ju
ne

 8
, 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020620118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020620118


to address generalization in the design of their models and in-
stead opt to demonstrate it on a different dataset or a held-out
test set from the same dataset. Moreover, according to a survey
by Luz et al. (61), many other ECG-classification works from re-
cent years fail to apply even the most basic measure for cross-
patient generalizability: interpatient training (i.e., using a disjoint
set of patients) for train, validation, and test time.
Regarding our chosen method for addressing each unmet need,

we wish to emphasize that, with the exception of the STA mech-
anism, our approach is not specific to ECG analysis and, in fact,
not even to medical tasks. In our view, explainability in medical
tasks should be domain specific by design; thus, we demonstrated
this by supporting the model’s predictions in terms of ECG mor-
phological features, which are salient to cardiologists (40). How-
ever, all other components of our system are applicable to any DL-
based approach. Specifically, they could be employed for clinically
relevant AI systems in non-ECG– or non-cardiology–related tasks.
In conclusion, we have demonstrated a medical-AI system that

addresses the unmet needs defined above in the context of ECG-
based classification tasks while also performing favorably on two
high-impact tasks validated on a challenging and realistic mix of
datasets. Therefore, we believe our framework has a number of
substantial benefits with respect to its clinical applicability in com-
parison with previous work in the domain of ECG analysis. How-
ever, notwithstanding these successes, we stress that our goal was to
clearly define and overcome the notable gaps between clinical needs
and medical-AI research, not to advocate our specific AI system as
ready for deployment. In this light, our suggested set of unmet-
needs represent the demands posed by clinicians in a way that al-
lows consideration by designers of medical-AI systems, and our
proposed solutions should be viewed as an established reference
for addressing them. Thus, we believe this work represents a sig-
nificant step forward in understanding and overcoming the limi-
tations that currently impede wider adoption of AI-based systems
in both cardiology and medicine in general.

Materials and Methods
Data Preprocessing. To achieve a realistic training setting, only the following
four minimal preprocessing steps were applied: 1) We removed 5 min from
the beginning and end of each recording in order to discard segments of
electrode placements or removals.* This step was performed because many
long ECG recordings contain no signal at the start or end of the recording
due to electrode placement or removal. We emphasize that, in a clinical
setting, this step will not be required, and, in principle, a signal of any length
can be processed. 2) We detrended the remaining signal using a second-
order polynomial. This step was necessary due to common low-frequency
oscillations in the recordings and would not be necessary for the evaluation
of a single short recording. 3) Extreme values of each ECG signal were
clipped, with extreme values defined as being over six SDs away from the
mean. 4) We scaled the signal to the dynamic range of [−1,1] by dividing by
its maximal absolute value. The clipping was done in order to normalize the
extremity of noise peaks without completely removing them, and the value
of six SDs was empirically chosen as sufficiently extreme. We stress that, after
these preprocessing steps, no additional ECG segments were discarded for
any reason from either our training or validation datasets. Note that all of
the above-mentioned four preprocessing steps are performed only for the
benefit of the optimization process. At no point would the physician be
exposed to the normalized signals, as the attention maps are displayed on
the raw, unnormalized signal produced by the ECG recording device.

Creating Labeled Samples. Each ECG record was divided into overlapping
windows containing B ∈ {30,60,90} beats, with an overlap of 26, 56, and 86
beats, respectively. We then segmented and resampled each beat on a
constant sampling grid of K − 1 samples centered around the beat’s R peak.
This was performed for each of L ∈ {1,2} ECG leads in the record. We set K =
82 in all cases. In addition, we calculated a (K − 1)-point estimate of the
power spectral density (PSD) for each beat using Welch’s method (61) and

the R-peaks intervals (RRI) vector. The B ECG beats from each window and
each ECG lead were stacked side-by-side columnwise into a [K, B] matrix,
where the first row of the matrix contains the RRI vector. The motivation for
including the RR interval with each beat was to keep information regarding
the heart-rate variability, a meaningful feature of cardiac function (62, 63)
that was lost during the resampling process, since each beat is now repre-
sented by an identical number of points, with the R peaks being always set
to the middle point of its respective column. Similarly, PSD matrices of shape
[K, B] were constructed, with a zero vector in the first row. The beat and PSD
matrices from all leads were concatenated along a new first dimension, thus
producing a three-dimensional tensor of shape [2L, K, B] for each window,
where L is the number of ECG leads.

Each such tensor was considered as a single input sample for our model,
with the corresponding assigned label being the set of rhythm type anno-
tations for all of the contained beats. Note that resampling around the R peak
and stacking beats in this manner effectively aligns their representations on a
stable fiducial point.

Model Architecture. The model is composed of three parts (Fig. 1): 1) STA, a
custom method that aligns between input channels from the time and fre-
quency domains and provides insight into the model’s predictions; 2) a deep
temporal convolution neural network (TCN), which extracts nonlinear fea-
tures from an input tensor; and 3) C + 2 classification heads, with C being the
number of different rhythm types the model is trained to recognize. Each
one of the C heads is a two-layer fully connected (FC) neural network with
the first layer shared across all heads. The two additional heads are used for
patients and dataset classification and contain a single FC neural network
each.

STA. The STAmechanismwas in part inspired by the self-attentionmechanism
(39) used across multiple tasks that require modeling temporal dependencies
within a sequence, such as machine translation (39) and image generation
(62). STA is based on the idea of self-attention but is specialized to incor-
porate both time- and frequency-domain representations of the input sig-
nal. The motivation for STA is twofold; first, it allows our convolutional
model to take advantage of spectral information in the input. Since spectral
data do not share common support axes with temporal data, it would be
meaningless to simply concatenate these representations and apply to them
a local convolutional filter. Thus, STA allows influence to flow between
multiple spectral and temporal samples, effectively by learning a transfor-
mation aligning these complementary signal representations. Second, by
learning to create this alignment per ECG window, we obtain a visualization
method that accentuates the relationship between the domains. This in-
creases the model’s interpretability by highlighting the most relevant tem-
poral and spectral features for each prediction. Thus, our STA module was
designed to model the interdependence between the time- and frequency-
domain representations of a signal and, specifically, to learn a weighting, or
“attention,” of time-domain features (i.e., signal morphology) based on the
frequency-domain representation of the signal (i.e., power spectral density),
and vice versa. Full details and mathematical formulations are available in
the SI Appendix.

TCN Architecture. A diagram of the architecture is presented in SI Appendix,
Fig. S4. Our TCN was designed broadly following the approach of Bai et al.
(38). This architecture takes advantage of dilated convolutions in order to
increase receptive-field size. However, instead of one-dimensional causal
convolutions, we employ two-dimensional noncausal ones, since causality is
not relevant for this type of task: We process a full ECG segment as one
sample, and we use its full temporal extent for producing an output for the
entire segment, not for each timestep within. Overall, our TCN is composed
of five repeating blocks, each containing nine metalayers: two of type A,
two of type B, and one of type P. These metalayers contain one or more
convolutional layers and are defined as follows:

• Type A (1): Dilated convolution layer, k = 4 × 2, d = 2 (2); Convolution
layer, k = 5 × 3, s = 1 (3); A residual connection between the input and the
output of the unit, containing a convolution layer, k = 1 × 1, s = 1.

• Type B (1): Dilated convolution layer, k = 4 × 2, d = 2 (2); Convolution
layer, k = 5 × 3, s = 1 (3); A direct residual connection between the input
and the output of the unit.

• Type P: Strided convolution layer, k = 5 × 3, s = 2. Note that this unit type
serves as a pooling operation in our network. For the 30-beat-per-window
model, we reduced the stride of the last three P units to 1 to prevent the
spatial extent on the signal being reduced to zero generalizable ones. An
ablation study for γ is presented in the SI Appendix.

*This was not performed on data from the CinC2017 challenge or the Hannun et al. test
set (10, 37), in which the duration of each sample is between 30 and 60 s.
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The parameters k, s, and d denote kernel size, strides, and the dilation
level, respectively. The order of the metalayers within each block is A, B, A,
and B repeated twice, followed by P. Following each convolutional layer in
any unit, we employ batch normalization (63), a nonlinear activation, and
dropout regularization (45) with a drop probability of d, with d = 0.4 in all
experiments. The nonlinear activations are all of type LeakyReLU (64) with
α = 0.2. The final block output serves as the input to all classification heads.

Classification Heads. We define C + 2 classification heads implemented as FC
layers. C heads are binary and are used for detecting rhythm classes. The two
additional nonbinary heads predict the patient ID and the database from
which the sample was obtained for the purpose of interpatient general-
ization as described in the sequel. All C rhythm classification heads have
2,048 hidden units and also share an initial FC layer with 2,048 hidden units.

Auxiliary Confusion-Loss Functions. In order to encourage interpatient gen-
eralization, we adapted the approaches introduced in (47, 48) and derived a
method that both improves interpatient generalization and provides an
indicator function for out-of-distribution samples. Both goals are obtained
via a similar mechanism.

We add two single FC layerswhose inputs are the outputs of the TCNmodule.
These layers are trained to identify the specific patient ID and the database from
which the sample originated. To induce an adversarial confusion loss on our
model, we employ a gradient-reversal layer (47) for both classification heads,
which flips the sign of the gradient coming from the classification heads during
backpropagation and applies a factor of γ to its magnitude. For the patient
classification head, we set γ = 0.1. In essence, this penalizes the model’s feature
extractor parts for the success of the patient classifier. Consequently, the con-
fusion loss regularizes the STA and TCN modules to not extract patient-specific
features but instead to be more robust. Pursuing a distribution indicator
function, we trained the dataset classification head with γ = 0. This does not
regularize the feature extractors but instead decouples the database classifier
head’s training from that of the larger model. We then use it to estimate the
probability of a new sample being sampled from a data distribution that was
previously seen by our model.

Statistical Analysis. In order to specifically limit the type-I statistical error of
the system during inference, we have randomly sampled a validation test (as
described in Results). We then computed the empirical cumulative distribu-
tion function (CDF) of scores from each rhythm classification head for all
positive validation samples of the relevant rhythm, Cpos, as well as the em-
pirical CDF of all negative validation samples of the relevant rhythm, Cneg,
from which we then computed the complementary C = 1 − Cneg. Note that
for each threshold τ, it holds that α ≤ C(τ), where α denotes the type-I error
of the model on the validation set. We can also compute the power of the
model on the validation set, where power = 1 − β, β = Cpos(τ), and β denotes

the type-II error of the model on the validation set. The scores used for
computing the empirical CDFs were the average scores obtained from the
dropout-based pseudoensemble.

For a given minimal required α, we choose a score threshold τ s.t. α = C(τ),
which is then used as a classification threshold for the specific rhythm type
for which the CDF was computed. For indicator-function threshold selection,
we employ the exact same method, with the single exception of replacing
the positive classification score of each rhythm head with the maximal
probability score given by the indicator function across all known databases.

STA Visualization and Comparison to Grad-CAM. In order to visualize the STA
results on the entire test set, and also in order to quantitatively compare
between our STAmethod and an existingmethod, we used Grad-CAM,which
was previously used in the literature for importance weighting in the con-
text of ECG, with the following methodology. We performed the compari-
son on the test set data (with which the results displayed in Table 2 were also
calculated). Each sample in this dataset is a two-lead ECG segment con-
taining 60 beats, with different rhythm annotations known per beat. We
calculated the attention scores generated by both methods and normalized
them so that the total attention of each method on the entire ECG segment
(all 60 beats together) is equal to 100. We then used the ecgpuwave package
available from PhysioNet (33) to automatically annotate each ECG segment
and mark all onsets and ends of the following submorphologies and sub-
segments: P wave, PR interval, QRS, ST interval, and T wave. We only used
the submorphological parts that ecgpuwave was able to successfully detect.
For each submorphology segment in each ECG sample, we also obtained the
rhythm annotation from the ECG beat it belongs to. We summed the at-
tention score of all points contained in each submorphology of each beat to
obtain the total attention score for that submorphology in that specific
beat. From this, we calculated aggregate statistics (such as the median value)
of the attention scores per submorphology and rhythm type. Additional
notes include the following: 1) points that are not contained in the sub-
morphology segments are not used in these visualizations; therefore, the
total visualized attention score is not 100. 2) Visualized scores are for a single
submorphology in a single beat, whereas the normalization is across 60
beats; therefore, the values do not represent a percentage of attention for
each submorphology but rather a relative score to compare between
different submorphologies.

Data Availability.All study data are included in the article and/or SI Appendix.
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