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Abstract—A variety of complex systems, including social
and communication networks, financial markets, biology, and
neuroscience are modeled using temporal graphs that contain a
set of nodes and directed timestamped edges. Temporal motifs
in temporal graphs are generalized from subgraph patterns in
static graphs in that they also account for edge ordering and time
duration, in addition to the graph structure. Mining temporal
motifs is a fundamental problem used in several application
domains. However, existing software frameworks offer sub-
optimal performance due to high algorithmic complexity and
irregular memory accesses of temporal motif mining.

This paper presents Mint—a novel accelerator architecture
and a programming model for mining temporal motifs efficiently.
We first divide this workload into three fundamental tasks:
search, book-keeping, and backtracking. Based on this, we
propose a task—centric programming model that enables
decoupled, asynchronous execution. This model unlocks massive
opportunities for parallelism, and allows storing task context
information on-chip. To best utilize the proposed programming
model, we design a domain-specific hardware accelerator using
its data path and memory subsystem design to cater to the
unique workload characteristics of temporal motif mining. To
further improve performance, we propose a novel optimization
called search index memoization that significantly reduces
memory traffic. We comprehensively compare the performance
of Mint with state-of-the-art temporal motif mining software
frameworks (both approximate and exact) running on both
CPU and GPU, and show 9x-2576x benefit in performance.

Keywords-hardware accelerator; programming model; tem-
poral motif mining;

I. INTRODUCTION

Graphs (or networks) provide a general and useful ab-
straction for modeling complex phenomena, e.g., social and
communication networks in computational social science,
protein-protein interaction networks in biology, and transac-
tion networks in finance [6], [35]. Small subgraph patterns,
referred to as motifs, play a crucial role in understanding
the structure and function of complex systems encoded as
a graph [5], [48], [64]. Mining motifs is one of the central
problems in network science [44].

Most real world phenomena are not static. Static graphs
aggregate the interactions that occur over networks by
omitting the temporal information. While analyzing static
graphs is useful, doing so completely disregards the dynamics
occurring over the graph. For example, in the case of

an email exchange network, a static graph renders two
users ‘“connected” irrespective of the number of emails
exchanged between them. This leads to severe information
loss. Temporal graphs, on the other hand, retain this infor-
mation by maintaining a list of all interactions and their
respective timestamps. Therefore, temporal graphs capture
richer information compared to static networks [30], [51].

Temporal motifs are one of the fundamental building blocks
of temporal networks, analogous to how static motifs are
for static networks. Temporal motifs have been shown to be
useful in user behavior characterization on social and com-
munication networks [30], [31], [33], [53], predicting peptide
binding in structural biology [43], characterizing the structure
and function of biological networks in bioinformatics [23],
monitoring energy disaggregation on electrical grids [63],
detecting fraud in financial transaction networks [19], and
detecting insider threats in an organization’s network [18],
[38]. Furthermore, local motif counts have been shown to
resolve symmetries and improve expressive power of graph
neural networks [11]. Similarly, local temporal motif counts
can be used as a subroutine for calculating node features in
temporal graph learning [59].

Despite such wide utility of temporal motif mining, exist-
ing software frameworks offer sub-optimal CPU performance.
This is because of the high computational complexity and
irregular memory accesses of this workload. Temporal motif
mining adds a time dimension to an already computationally
and memory intensive static graph mining problem [10], [12],
[13], [15], [57], [71], [78]. Furthermore, accesses to the graph
structure and temporal edges incur irregular memory accesses
that negatively impact the memory system’s performance.
While several acceleration techniques have been designed
to speed up static graph processing [2], [4], [7], [9], [20],
[45], [46], [49], [55], [62], [66], [67], [70], [77], streaming
graph processing [8], [56], and static graph mining [10], [12],
[13], [57], [71], [78], no prior work targets temporal motif
mining. Moreover, temporal motif mining exhibits unique
workload characteristics compared to previously studied
graph problems as it processes temporal properties along
with structural constraints (the main focus of prior works).

In this paper, we present Mint—a novel hardware
accelerator architecture and accompanying programming
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model for efficiently mining temporal motifs. To best address
the challenges of efficiently executing this irregular algorithm,
the design goals of Mint are three-fold: (1) realize a high
degree of parallelism, (2) achieve high hardware utilization,
and (3) improve memory system performance. To this end,
we propose a task—centric programming model that enables
asynchronous execution. The task is defined as a basic unit
of computation for mining temporal motifs, e.g., searching
for a new edge to match. The asynchronous nature of this
model unlocks a high degree of parallelism. Additionally,
decoupled execution allows better hardware utilization.

Mint further proposes a new hardware accelerator to best
utilize the proposed programming model. The hardware
architecture is motif-agnostic, and can be programmed to
mine any arbitrary motif. The key features of the proposed
hardware design include a hardware 1) fask queue that
dispatches tasks to compute units, 2) on-chip context memory
that stores the key task context information to identify and
advance the progress of an in-flight task, and 3) unique
distribution of work to different compute units that perform
on-chip context updates and off-chip graph traversal to find
a new edge mapping. To further enhance the performance of
this architecture, we make a key observation that the amount
of node neighborhood data used by the algorithm reduces
with respect to time. Based on this observation, we propose
a novel optimization of memoizing the search index that
significantly reduces the memory traffic of Mint.

We comprehensively evaluate the performance of Mint
using detailed RTL models of proposed hardware and a C++
based cycle-accurate simulator. We compare the performance
of Mint with state-of-the-art software frameworks running on
a high-end server-grade CPU and a GPU. Mint outperforms
the CPU implementations of Mackey et al. [38] and Paranjape
et al. [53] by 363.1x and 2575.9x respectively, a GPU
version of Mackey et al. by 9.2x, and PRESTO [61] by
16.2x, on average. Similar to Mackey er al. [38] and
Paranjape et al. [53], Mint runs an exact mining algorithm,
whereas PRESTO is an approximate mining algorithm. Using
28 nm commercial technology library, we implement Mint to
find that it consumes just 28.3 mm? silicon area and 5.1 W.

Mint is the first work that designs a domain-specific
accelerator for mining temporal motifs. The key contributions
of this work are as follows:

o Task-centric programming model that allows for massive

parallelism opportunities.

o Hardware accelerator architecture that uses its data path
and memory design to cater to the unique properties of
temporal motif mining.

o Search index memoization optimization that significantly
reduces memory traffic.

o Mint—the first end-to-end system design for accelerat-
ing temporal motif mining that significantly outperforms
existing software baselines running on a CPU by one—
to—three orders of magnitude.
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Figure 1. Example of §—temporal motif mining task. Depicted in (a)
is the input graph, and (b) is the §—temporal motif. (c) presents a valid
candidate for 6 —temporal motif in the input graph, (d, e) are invalid motifs
due to violation of §—constraint and edge ordering, respectively.

II. BACKGROUND

A. Problem Definition

A temporal edge is defined to be a timestamped directed
edge between an ordered pair of nodes. We define a temporal
graph as a collection of temporal edges. Formally, a temporal
graph G is a collection of tuples G = {(u;,v;,t;)}1" |, where
u; and v; are source and destination nodes of the edge (u;,v;),
and #; € R™ is a timestamp of the edge. We assume that the
timestamps of the edges in the temporal graph G are unique'.
Strictly speaking, G is a multi-digraph as (a) the edges are
directed, (b) there might be many edges between a pair of
nodes, each one with a different timestamp; in this work, we
refer to G as a graph for simplicity.

A §-temporal motif® is defined as a sequence of I edges,
M = {(u;,vi,t;)}._,, that are time-ordered and occur within a
6 duration, i.e., t] <t <...<t; and t; —t; < 8. The problem
of temporal motif mining is to mine occurrences of the 8-
temporal motif M within a larger temporal graph G. In simple
words, a d-temporal motif is an occurrence of the sequence
of edges in the graph G such that the first and last edges
of this sequence occur at most 6 time apart. It differs from
the task of static motif mining in two ways: (1) in static
motif mining, we are not interested in the sequence in which
the motif’s edges occur within G; (2) static motifs do not
impose any constraints on the edge properties. Temporal
motif mining may be interpreted as identifying subgraph
isomorphisms with sequential and d—constraints over edges.

As a simple example, consider mining of a three-cycle -
temporal motif in an input temporal graph as shown in Fig. 1.
Fig. 1(c) shows a valid motif because the edges between
nodes 0, 1, and 2 in this motif follow edge ordering and
occur within 8 = 25. On the other hand, Fig. 1(d,e) show
invalid motifs either due to the §-constraint violation or an
incorrect edge order. In a static setting, however, all three
motifs are valid as it does not account for edge ordering and
timestamps.

IThis assumption comes without loss of generality [38], [53].
2We sometimes refer to 8-temporal motif simply as temporal motif for
brevity.



B. Real-world Applications

Temporal graphs capture a rich set of information com-
pared to static graphs by storing dynamic interactions in
addition to the graph structure. Mining temporal motifs has
shown to be effective across several application domains
including social and communication networks [30], [31],
[33], [53], structural biology [43], bioinformatics [23], and
finance [19].

In [31], the authors use temporal motifs as a tool to
understand and quantify how information flows over a
social network. Crucially, they demonstrate that it cannot be
captured using its static counterparts. In financial transac-
tion networks, certain types of temporal motifs can reveal
artificial attempts to create high transaction volumes — an
indication of potential financial fraud [19]. Features built
with temporal motif distributions are shown to outperform
their static counterparts in machine-learning based network
classification [73]. In [38], authors show how temporal
motif mining can be used to detect insider threats in an
organization. In summary, temporal motifs are one of the most
fundamental properties (e.g., degree and centrality) computed
over temporal graphs. As temporal graphs become ubiquitous,
it becomes increasingly important to mine temporal motifs
efficiently.

C. Algorithmic Prior Work

Several algorithms have been proposed to mine motifs in
temporal graphs. These algorithms can be broadly classified
into two categories: (a) exact algorithms [32], [38], [53],
and (b) approximate algorithms [37], [61], [74]. While
exact algorithms aim to mine the precise temporal motifs
in an entire input graph, approximate algorithms sample
a subset of an input graph to estimate the number of
matches in the entire graph. By limiting the amount of
work, approximate algorithms achieve better scalability by
reducing both computational and memory complexities.
However, they suffer from inaccuracies in motif counts as
they do not enumerate all motifs. In many scenarios, exact
algorithms are still desired. For example, (1) in financial
transaction networks, identification of cycles, a specific
class of temporal motifs, indicates potentially fraudulent
activity [19]; (2) in organization networks, certain temporal
motifs can characterize insider threats [18], [38]. In such
high-risk scenarios, it is crucial to employ exact mining
algorithms to enumerate all instances of the desired motifs,
instead of approximate mining. Furthermore, approximate
algorithms use exact algorithms as subroutines to process a
subset of nodes/edges [37], [61]. Therefore, Mint focuses on
speeding up exact temporal motif mining; it is also directly
applicable to accelerate approximate mining algorithms.

Exact algorithms can be further divided into two sub-
categories: (1) pattern-specific algorithms [32], [53], and
(2) generic pattern-agnostic algorithms [38], [53]. While
pattern-specific algorithms achieve better efficiency by using

computation catered to a specific temporal motif, their
applicability is limited. Furthermore, unlike static graph
mining (e.g., GraphPi [65], AutoMine [41], GraphZero [40]),
no automatic framework exists for temporal motif mining that
can discover optimized algorithmic schedules for arbitrary
motifs. This requires designing hand-optimized algorithms
for every new motif, which is error-prone and requires non-
trivial programmer effort. Pattern-agnostic exact algorithms,
on the other hand, can be used to mine any arbitrary temporal
motifs. In this paper, we focus on optimizing a state-of-the-
art pattern-agnostic exact temporal motif mining algorithm
proposed by Mackey et al. [38] that outperforms prior
algorithmic works.

D. Algorithmic Behavior

This section introduces the temporal motif mining algo-
rithm proposed by Mackey et al. [38].

Data structures. The primary data structure used in this
algorithm is a temporal edge list, stored in an array of
structures. Each member of this array contains source and
destination node IDs and a timestamp. Temporal edges in this
array are sorted based on their timestamps. Additionally, the
graph structure is stored in a compressed format to simplify
retrieving incoming and outgoing edges from each node. This
structure stores indices of temporal edges in the temporal
edge list (instead of storing the temporal edges [69]). In
addition to the graph structure, this algorithm stores key book-
keeping information. This includes mappings between motif
and graph nodes (m2gMap]||, g2mMapl)). A stack (eStack)
of mined edge indices is used for Depth-First Search (DFS)
traversal.

Algorithm. Mackey et al. [38] present a pattern-agnostic
temporal motif mining algorithm that uses search tree
exploration. Each node of the search tree matches an edge in
a motif to an edge in the graph. Starting from the first edge
(root node of the search tree), the algorithm iterates over
edges of the temporal motif in a chronological order to find
one match at a time, following a DFS tree traversal. Upon
matching each edge, book-keeping information is updated.

Algorithm 1 presents this in detail. The outer while loop
iterates over edges in an input motif. For each edge in a
motif, the FINDNEXTMATCHINGEDGE() function tries to
match a corresponding edge in a graph. By Ny, (4) and
Nin(u), we denote the list of outgoing and incoming edges
of a node u, respectively. If a valid match is found, book-
keeping structures are updated. Otherwise, a backtracking
procedure voids previous matches using a stack following
a DFS traversal order, and this process is repeated until all
motifs are found. This algorithm performs most of its work
in finding an edge to map. As shown in the algorithm, this
procedure also takes into account whether or not either source
and/or destination node of the motif edge have been mapped,
and edge orderings to reduce the search space.



Algorithm 1 Generic temporal motif mining algorithm [38]

1: procedure TEMPORALMOTIFMINING(G, M, §)

2 Input: temporal graph (Vg,Eg), motif (Vi Ey), time limit §.

3 Output: temporal motifs

4 // Initialize data structures: edge mapping, counters

5: Initialize: m2gMapu] = —1Vu € Viyy; g2mMapu] = —1Vu € Vg

6: eCount[u] = 0Vu € Vg, eStack = [|,ey = —1,eg = —1,1' ¢~ o
7.

8

9

while true do > Loop until all motifs found
e = FINDNEXTMATCHINGEDGE() & Search: find a graph edge to match
if e is valid then

10: UPDATEDATASTRUCTURES() > Book-keeping: update data struct
11: eg+=1

12: while e > |Eg| or time(eg) > 1" do > Backtrack: void previous mapping
13: if eStack is not empty then

14: eg = eStack.pop() +1

15: if eStack is empty then ¢’ +— oo

16: eCount[ug]— =1, eCount[vg]— =1 © Reduce mapped edge cnt
17: if eCount[ug) == 0 then > No edges of ug mapped
18: uy < g2hMap(ug)

19: g2hMaplug) = —1, h2gMapluy] = —1 > Free ug,uy
20: if eCount[vg] == 0 then > No edges of vg mapped
21: vy 4 g2hMap)|vg|

22: g2hMap(vg| = —1, h2gMap|vy) = —1 > Free vg, vy
23: else

24: return results

25:

26: procedure FINDNEXTMATCHINGEDGE( )
27: (up,vir) = Emlem)

28: (uG,vG) = m2gMap|uy],m2gMaplvy]

29: /I Gather candidate edges to match with the next motif edge

30: if ug > 0 and vg > 0 then > Both ug,ve mapped to motif nodes
31: S < {e e Now(ug)/Nin(vg) : 1. > time(eg)} > Irregular access + filter
32: else if ug > 0 then > Only ug mapped to a motif node
33: S <« {e € Now(ug) : te > time(eg)} > Irregular access + filter
34: else if v > 0 then > Only v mapped to a motif node

> Find a new mapping

35: S «—{eeNiy(vg) 1t > time(eg)} > Irregular access + filter
36: else > Both ug, v not mapped
37: S <« {e€Eg:t, >time(eg)} > Search space is an entire edge list
38: // Return the first valid candidate edge that satisfies temporal constraints
39: for each edge e in S do

40: if e is not mapped and time(e) <1’ then

41: return e

42:

43: procedure UPDATEDATASTRUCTURES( )
44: if eyy == |Ey| — 1 then

> Add a new mapping
> Entire motif found

45: Create a motif H from edges in eStack; add H to results.

46: else > Partial motif found
47: (uG,vG) < Eglec), (um,vm) < Emlem]

48: m2gMapluy] = ug, m2gMaplvy] = v > Map motif node to graph node
49: g2mMaplug) = uy, g2mMap|vg) = vy > Map graph node to motif node
50: eCountug]+ =1, eCount[vgl+ =1 > Increment mapped edge cnt
51: if eStack is empty then > eg is the first matched edge
52: '« time(eg)+ 0 > Upper bound on the motif’s end time

53: eStack.push(eg); ey +=1

III. WHY DESIGN A NEW ACCELERATOR?

This section argues the need of designing a new accelerator
for accelerating the temporal motif mining problem.

A. Essence of Optimizing This Workload

Wide applicability. Static graphs do not capture rich
dynamics that occur over networks [30]. Temporal networks
are ubiquitous in domains ranging from communications, bio-
logical sciences, and finance. Temporal motifs are fundamen-
tal building blocks that constitute a temporal network [30].
Therefore, counting and mining temporal motifs is one of
the primary tasks in temporal network analysis [22]. As
we discussed in §II-B, temporal motif mining is widely
applicable across several critical application domains. These
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Figure 2. Performance scaling of M1 mining on different datasets (left), and
CPU stall distribution (right) for mining M1 on a representative wiki-talk
dataset.

include user characterization in social and communication
networks [30], [31], [33], [53], understanding and explaining
biological phenomena [43], monitoring electrical power grids
[32], and machine learning on temporal graphs [11], [59],
[73]. With the explosion of online content and digital footprint
generated by social networks, temporal graphs are getting
larger and richer by the day. Therefore, designing optimization
techniques for such widely applicable primitive operations
is highly desirable.

Algorithmic complexity. Let |Eg| and |Ey| denote the
number of edges in the graph and the motif, respectively, and
k denote the expected number of edges occurring in G within
the duration 8. The worst-case algorithmic complexity of
Algorithm 1 is O (|Eg| -k|EM|’1): it scales linearly with |Eg|,
polynomially with k, and exponentially with |Ey|. Intuitively,
(i) increasing the temporal limit & of a motif increases the
width (i.e., the number of nodes to visit in Eg for each
edge in Eyy) of the DFS search tree; and (ii) increasing
motif size |Ey| increases the depth of the DFS search tree.
Therefore, the resulting complexity increases. For example,
mining a 5-edge motif with temporal limit 6 of 1 hour on
the stackoverflow dataset implies |Eg| = 32M, |Ey| =5, and
kavg = 1500, leading to unreasonably high complexity.

B. Workload Characterization and Optimization Opportuni-
ties

To understand the limitations of running existing temporal
motif mining software on a commercial CPU, Fig. 2 shows its
performance scaling and stall distribution. The figure shows
the runtime of mining M1 on different datasets, normalized
to a single—thread performance. The figure shows that the
performance scaling saturates beyond 8-32 threads. For small
datasets, the performance degrades by adding more threads
as threading overhead dominates the execution time.

To better understand this trend, Fig. 2 (right) shows the
stall distribution for mining M1 on a representative wiki-
talk dataset, based on the CPI stack methodology [17].
For this experiment, we use a 32-thread configuration with
three levels of cache hierarchy, 2 MB LLC slice/core.
This distribution shows that the CPU spends 72.5% and
22.7% of the execution time stalled on DRAM and branch
mispredictions. The DRAM stall is due to two reasons:
irregular memory accesses to access graph structure and
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Figure 3. Unique workload characteristics in terms of data structures and
algorithms employed in (a) graph processing, (b) static graph mining, and
(c) temporal motif mining.

neighborhood filter operations that waste memory bandwidth
(shown in lines 31, 33, 35 in Algorithm 1). Furthermore,
data-dependent control flow instructions in lines 30-36 and
lines 13-20 cause frequent branch mispredictions. This calls
for developing new acceleration techniques that can alleviate
the memory and control-flow bottlenecks of this workload.

C. Unique Workload Characteristics

At an algorithmic level, most prior works optimizing graph
algorithms [2], [3], [4], [10], [12], [13], [15], [20], [45],
[49], [55], [57], [67], [711, [77], [78] work on static graphs,
whereas temporal motif mining operates on a temporal
graph that adds a time dimension to the problem. While
streaming graph processing accelerators [8], [56] also operate
on dynamic graphs, they mostly optimize traditional graph
computations (e.g., PageRank). The reason is that streaming
graphs measure properties of the accumulated static graph
over time; this is different from temporal graph analysis (our
setting), where the goal is to analyze temporal properties
of a graph [60]. The edges of a temporal graph carry time
information; therefore, the edges are ordered. In fact, this
notion of order is central to temporal graph analysis. In
streaming graphs, on the other hand, although the edges
arrive at different points in time, they are treated as “updates”
performed to the underlying accumulated static graph. Here,
in stark contrast to temporal graph analysis, the graph
properties remain unchanged even if the order of edges is
permuted.

To motivate the necessity of designing a new accelera-
tor for temporal motif mining, this subsection points out
differences between its workload characteristics and other
well-studied workloads, i.e., graph processing and static
graph mining. Fig. 3 shows the difference between generic
pseudo-code, data structures, and computation patterns used
in three algorithm categories. Graph processing algorithms
(e.g., PageRank and SSSP) typically pick a vertex from
an active list, access its neighbors using offset and edge
lists, and updates vertex properties as shown in Fig. 3(a).

This incurs irregular data-dependent access into the offset,
edge, and property lists. Graph mining algorithms, on the
other hand, typically iterate over all vertices, find vertex
neighborhoods, and compute set operations (e.g., intersection)
to mine subgraphs. The unique feature of this algorithm
is the set operation computation, not present in graph
processing algorithms. This has motivated the designs of
novel architectures [10], [12], [13], [15], [57], [71], [78] for
accelerating static graph mining.

As discussed in §II-D, temporal motif counting uses tem-
poral edge list, instead of a static edge list. The key difference
between these data structures is that the edges in a temporal
edge list are sorted by their timestamps. Therefore, unlike
the edge list used in static algorithms, outgoing/incoming
edges from the same node are not stored contiguously for
temporal motif mining. Due to this design, the edge list for
temporal algorithm stores edge indices instead of neighbor
IDs. Furthermore, mining temporal motifs performs search,
book-keeping, and back-tracking (Algorithm 1), where it
spends a majority of execution time fetching neighborhood
and searching for the first edge with a timestamp larger than
the previously matched edge (lines 31, 33, 35 in Algorithm 1).
Unlike static subgraph mining, temporal motif mining does
not employ set operations as primitive computational blocks.
Moreover, the amount of work performed by static/temporal
motif algorithm is roughly proportional to the number of
matched motifs, because each match requires a full expansion
of the search tree. As shown by prior work [38], the ratio of
number of matched static to temporal motifs vary by orders
of magnitude. Depending on the input graph and motif, this
ratio can be significantly higher or lower than 1. Therefore,
the amount of work in static and temporal motif mining
algorithms can be vastly different. Due to the unique layout
of data structures and computation patterns in temporal
motif mining that lead to significantly different amounts of
algorithmic work, it cannot be readily accelerated using prior
techniques, which calls for designing a new accelerator for
this problem.

IV. TASK—CENTRIC PROGRAMMING MODEL

Motivated by the workload characteristics of temporal
motif mining (§III-B), this section presents a novel task—
centric programming model. The goals of this model are two-
fold: (a) enable asynchronous execution to unlock massive
parallelism and improve hardware utilization, and (b) reduce
off-chip memory traffic.

A. Task: A Unit of Computation

A task is referred to as a single unit of computation used
in temporal motif mining. Algorithm 1 performs three unique
types of computations: 1) search: find the next edge to map,
2) book-keeping: update key metadata information when a
valid edge is found, and 3) backtrack: void the last mapped
edge in metadata structures if no valid match is found. To
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capture this algorithmic behavior, we propose to represent
these three functions as tasks.

Temporal motifs are mined using search tree expansion.
Tasks that initiate the mining of a motif (that we call
root tasks) are generated by matching the first motif edge
with different temporal graph edges in chronological order.
To expand the search trees further, subsequent tasks are
generated by their parent tasks based on the outcome
computation. For example, a search task would generate either
a book-keeping or a backtracking task based on whether a
matching edge is found or not. Fig. 4(a) shows the parent-
child relationship between different task types. This allows
a natural, incremental flow of task information from parents
to children. A task terminates upon its completion. Upon
termination, a child task is spawned if additional work is
needed to traverse the search tree. The task generation stops
once the whole search tree has been explored, and a new
root task is generated.

B. Task Context

Each parent task communicates its progress to its child
tasks to continue the mining process. We propose to capture
this information in terms of a task context. A task context
includes (a) task type, (b) last matched motif edge index (ey),
(c) last matched input edge index (eg), (d) a mapping of graph
nodes to motif nodes (g2mMapl]) and vice versa (h2gMap])),
(e) a stack of mapped temporal edge indices (eStack), and (f)
initial timestamp (firstEdgeTime). A context stores minimal
information required to traverse the search tree. Therefore, a
task context enables execution decoupling between the parent
and child tasks.

Memory requirement. The memory requirement of a
task context is low. The task type, edge IDs, and temporal
information are all integers, and can be stored with O(1)
memory complexity. The node maps and the edge stack, on
the other hand, grow linearly with the number of edges in
input temporal motifs (i.e.,, memory complexity O(|Ey|). As

shown by prior algorithmic works [32], [37], [38], [53], [61],
[74], a practical temporal motif size in real-world applications
is up to eight edges. Using this conservative estimation,
the memory requirement of a task context is 178 B. This
negligible memory requirement allows several task contexts
to be stored on-chip and accessed at low latency in an
accelerator.

C. A Walk—Through Example

Fig. 4(b-d) demonstrate a walk-through example of the
proposed programming model. Fig. 4(b) shows an example
input graph, temporal motif, and their temporal edge lists.
Fig. 4(c) shows the expanded search trees to mine the input
motif. Note that each node of these trees maps one edge in
the graph to a motif edge.

Fig. 4(d) expands the left-most search tree to explain
how the programming model works. As discussed in §IV-A,
the root task automatically maps edges in the graph to the
first motif edge in chronological order. Therefore, the first
task performs book-keeping to map ey = a to eg = 0. As
shown in the simplified task context, graph nodes 0 and I
are mapped to motif nodes A and B using g2hNodes[] and
h2gNodes[). The matched graph edge e = 0 is pushed to
the stack. Additionally, e, ey, and firstEdgeTime are also
updated (not shown due to limited space).

This book-keeping task spawns a search task that finds
the next edge to map to ey = b. Using the graph structure
and temporal information, this step finds eg = 1 and spawns
a book-keeping task to update the task context. This book-
keeping task extends the context by mapping graph nodes 2
to motif node C as well as pushing eg =1 to the stack. This
process continues until either a full motif is mined or if the
search task cannot find any edge to map. Fig. 4(c) shows that
there is no dependency between traversing different search
trees, which results in traversing the different search trees
in parallel asynchronously. Furthermore, in the proposed
programming model, a task context is the only information
necessary to advance the search. This naturally allows
asynchronous, parallel task execution. In sum, the proposed
programming model with the right hardware design can
achieve high throughput.

D. Code Transformation

Fig. 5 shows the conversion of temporal motif mining
code from an edge-centric to task—centric programming
model. To achieve this, a programmer has to define the
TaskContextType class (Fig. 5(a)). This includes mem-
ory allocation for context information, and helper functions
to update the context. Additionally, the programmer needs
to convert the main procedure used in the core algorithm.
Lines 5-12 in Fig. 5(b) show these changes. The main data
structure is the task queue. Because search trees can be
traversed in parallel, several worker threads can dequeue
pending tasks from, and enqueue new tasks back to the



1. class TaskContextType { 1. int TemporalMotifMining(..) {

2. 2. int num_matches = 0;

3. public: 3. TaskQuqueType t_queue;

4. // define helper functions 4.

5. 5. while(true) {

6. private: 6. if(t_queue.empty() && eG==n_graph_edges())
7. bool _busy = false; 7. break;

8. TaskType _type; 8. TaskType task = t_queue.dequeue();
9. int _eG = -1, _eM = -1; 9. task.process(&num_matches);

10. MapType _h2gMap, _g2hMap; 1. t_queue.enqueue(task.child_task());
11. StackType _eStack; 11.

12. int _firstEdgeTime = -1; 12.

13. 13. return num_matches;

14.}; 14.}
(a) Task context class (b) Task-centric temporal motif mining

Figure 5. Task—centric temporal motif mining.

queue for several tree expansions. The task.process ()
function executes one of three tasks: search, book-keeping,
and backtracking. If a leaf node of the search tree successfully
finds a match, num_matches is incremented. As presented
in §IV-C, traversing different search trees are independent
of each other. Because this is a generic algorithm that can
be used to mine any arbitrary temporal motif in any input
temporal graph, the programmer effort modifying this code
can be easily amortized over several executions.

V. ACCELERATOR ARCHITECTURE

To best utilize the proposed programming model, this
section proposes a novel hardware accelerator architecture.

A. Design Overview

Fig. 6 shows the hardware accelerator design of Mint. It
contains four memory structures, i.e., task queue, target motif,
context memory, and on-chip caches, and two computation
blocks, i.e., context manager and search unit. The task queue
is a hardware FIFO queue that queues root tasks (§IV-A). This
root task is offloaded directly to the context manager with
a book-keeping task to initialize the search tree expansion.
The target motif, programmed by the host CPU, stores the
motif being mined, making Mint a generic and motif-agnostic
temporal motif mining hardware design.

The context memory stores metadata information to keep
track of task progress. This memory is updated by the context
manager during the book-keeping/backtracking phase. The
search unit, on the other hand, reads from this context
memory to mine a graph edge. Finally, the on-chip caches
are used to cache the graph structure and temporal edge
list data to reduce the memory latency of the search unit.
The on-chip context manager only updates the contexts of
in-flight tasks, and does not communicate with DRAM.

As detailed in §IV, a task can have three types: search,
book-keeping, and backtracking. The context manager exe-
cutes book-keeping and backtrack tasks. The search unit, on
the other hand, is solely responsible for the search task. The
search unit is further divided into blocks: the (1) dispatcher,
and (2) search engine. The dispatcher reads an updated
context, and dispatches work to the search engine. The search
engine, in turn, consumes this task, and mines a graph edge to

match a temporal motif edge. Upon completion of a search
task, the search engine offloads either a book-keeping or
backtracking task to the context manager for updating the
task context, depending on the success or failure of the
search.

The context manager only performs on-chip accesses to
update context memory. These accesses take a single cycle.
On the other hand, the search engine fetches data from
DRAM, which takes multiple cycles. While some part of
this latency is reduced by on-chip caches, multiple search
units are necessary to exploit memory-level parallelism.
Therefore, Mint employs several search engines that work on
independent search tasks in parallel. To match the throughput
of search engines, several context managers and memory
instances are also used. While it is possible to use a fully
asynchronous programming model, where any compute
engine can pick up any pending task from the queue, this
requires costly on-chip crossbars and routing logic, and a
multi-ported task queue to enable an architecture with a large
number of compute units. To simplify this microarchitectural
design and routing logic, Mint’s context manager, context
memory, dispatcher, and search engine work in tandem to
traverse a search tree. While this architecture also allows
an asynchronous task execution model, limiting the location
of task offload greatly simplifies the design parameters and
saves silicon area/power by avoiding costly routing logic.
This, however, does not sacrifice performance because each
context memory instance is busy when the assigned search
engine mines an edge. This claim is further verified by the
high bandwidth utilization of Mint (§VIII), showing that a
fully flexible all-to—all connection between context managers
and search engines is unnecessary.

B. Hardware Component Design Details

Target motif memory. This is a small register file that
holds the target motif. For each temporal motif edge, it stores
the source and destination IDs, and one delta time for an
entire motif. Because the motif only has an edge ordering, a
simple register file design is sufficient, where it is possible
to use the chronological edge number ey, as an index. Prior
works mine motifs with up to eight edges. Therefore, Mint
supports temporal motifs of up to eight edges.

Task queue. The task queue is used to store and offload
root book-keeping tasks. Fig. 6(b) shows the fields in each
entry. Each queue entry stores a root task packet that contains
a book-keeping task with additional information about
mapping the first motif edge M.y, With different graph edges
Gedge in chronological order as shown in §IV-A. Therefore,
each task queue entry stores the graph edge index eg. Using
eG, Mint compute units can obtain source/destination graph
nodes and edge timestamps from DRAM. Task queue initiates
a search tree traversal by offloading a book-keeping task to
the context manager. After this, a context manager works
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Figure 6. Hardware design overview of Mint: (a) overall architecture, (b) task queue entry, (b) an instance of context memory, and workflows of (d)
context manager, (e) search unit dispatcher, (f) first phase of search engine, and (g) second phase of search engine. Parts (b-g) show Mint hardware

components and their interactions with the rest of the system.

with a search unit to expand the rest of the search tree without
communicating back to the queue.

Context memory. Fig.6(c) shows the context memory
design, where each instance stores task context information.
This includes a set of registers, a stack, and a Content
Addressable Memory (CAM). Context registers store the task
status (i.e., busy or available), indices of the last mapped edge
(ey and eg), and the timestamp of the last mapped graph edge.
The stack eStack stores indices of previously mapped edges.
The stack is used by the context manager for backtracking.
The CAM memory stores the node mapping information,
which mimics g2mMap|[] and h2gMap]| in hardware. The
design decision of using a CAM is to quickly search which
motif node is mapped to which graph node, and vice versa.
Additionally, the CAM also stores the number of times a
graph node is mapped (eCount in Algorithm 1).

On-chip cache. This is a standard multi-bank, multi-port
set associative SRAM cache that reduces the latency of search
by caching the graph structure and temporal information.

Context manager. The context manager updates the con-
text memory while performing book-keeping or backtracking.
As shown in Fig. 6(d), it accepts task packets either from the
queue (only the root task) or the search engine (SE) (0),
and updates specific parts of context memory based on the
task type (@). For book-keeping, the manager expands a
context for a newly matched edge that includes pushing an
edge index to eStack, expanding the node mapping CAM,
and incrementing their connection counts. It also updates
eG, ey, and time registers to reflect the state of the most
recent search. For backtracking, a context manager pops an
entry from the stack, voids node mappings, and updates edge
index and time registers to invalidate the last edge mapping.

Search unit dispatcher. After the context memory is
updated, the dispatcher reads this context and offloads a
search task to the search engine. As shown in Fig. 6(e),

the dispatcher first reads an updated motif edge index (eyr),
and reads edge information from the target motif (€)-@).
Using this information, the dispatcher reads context memory
(@-@) and finds the timestamp of the last mapped graph
edge, and node IDs in the graph that are mapped to source
and/or destination node IDs of the temporal edge that the
search engine will mine next. Using this information, the
dispatcher offloads a search task packet to a search engine

©.

Search engine. A search engine performs a two-phase
search in an attempt to match a motif edge to a graph edge.
The first phase finds a set of graph edge indices that might
map to a motif edge, and the second phase finds an exact
edge. Search phase 1 (Fig. 6(f)) accepts a search task from
the dispatcher (@) that contains source/destination IDs of
the motif edge being mined and previously mapped graph
node IDs (if any). Using these graph node IDs, the search
engine fetches its outgoing/incoming edge indices (€)-€))
(similar to lines 30-37 in Algorithm 1). Additionally, it filters
edge indices to find all edges with timestamps after the last
mapped graph edge. This is simply done by finding a subset
of neighbor edge indices greater than e read from the context
memory. In contrast to software that employs binary search,
Mint employs linear search as it is possible to efficiently
perform this operation in hardware by streaming edge index
cache lines using a series of comparators in parallel. These
filtered edge indices are then processed in the second search

phase (@)).

Fig. 6(g) shows the second search phase that finds an exact
edge to map. Using filtered edge indices from phase 1 (),
this phase first fetches temporal edges from memory (@)—€)).
These edges are examined for both structural and temporal
constraints by reading the context information (@) to find
the first valid edge that matches a motif edge. Resolving
structural constraints includes ensuring that either the new



'g 1.007- T m1_wt nodel |
[ == SO i Vo =R —_— ]
Po) S 0.751 ml_wt_node2
.E s Lo il AN m1_so_nodel ]
§Foso TN L e et
-g\":" 0.25

g2 x‘\'{ """"""""
2 0.00

Algorithm Progress

Figure 7. Reduction in the neighborhood data utilization for two sampled
nodes while mining M1 on wiki-talk and stackoverflow. The x-axis
represents the progress of an algorithm.

graph nodes are not mapped earlier, or mapped to the same
nodes in the motif that we are trying to match. Resolving
temporal constraints includes checking edge timestamps
against max edge time for the motif being mined, to verify
the delta-time requirement. If either of these constraints are
violated, a graph edge is discarded and the search engine
examines the next graph edge. Based on whether a valid
edge is found or not (@), the search engine offloads either
a book-keeping or a backtracking task back to the context
manager ().

Crossbar. In this architecture, there is only one crossbar
that resides between the task queue and all context managers.
Because this is a one—to—all connection, there is no arbitration
needed that further reduces area and power. Each search
engine only serves its paired context memory because a
context memory will not generate a new search task until the
search engine returns the result of the previous search tree
expansion. Therefore all connections within a set of context
memory, search engine, dispatcher, and context manager are
local, eliminating the need for convoluted NoCs or crossbars.

VI. DESIGN OPTIMIZATIONS

This section discusses a novel design optimization to re-
duce the memory requirement of phase 1 search. Additionally,
we briefly discuss two standard optimizations that we tried
that did not result in fruitful performance improvement.

A. Search Index Memoization

The goal of this optimization is to reduce the memory
traffic in search phase 1 by fetching mostly useful data.
As detailed in §V-B, the first phase of search fetches
outgoing/incoming neighbors of a node, and filters them
based on the current e;. Lines 31, 33, 35 shows this filter
operation in Algorithm 1. To better understand the behavior
of this operation, Fig. 7 shows the utilization of neighborhood
data with respect to time. Intuitively, due to chronological
order of mining edges, as the algorithm progresses, the
resulting filtered edges have higher timestamps. Because
node neighborhoods store edge indices in increasing time
fashion, the neighborhood utilization decreases with respect
to time. Notably, this is not a problem in the software

Search Tree n

Search Tree 1

Search Tree n
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Figure 8. Design optimization of search index memoization to reduce

memory traffic. (a) Progression of the algorithm with respect to time, (b)
expanding the blue node in tree n by searching current eg = 18 and e2”" = 13,
and (c) reduced search operation computation while expanding the blue
node in three m due to memoization.

implementation [38] as it employs binary search. This results
in wasted DRAM bandwidth and on-chip cache resources.

To prevent futile data fetches, we propose a novel opti-
mization to memoize the search result. For each node, we
memoize the resulting index of the last search. Because
search is performed in a chronological order, it is guaranteed
that the edges discarded in any search operation will never
be used in its subsequent search operations. We use two
data structures for memoizing the previous search result for
incoming and outgoing neighborhoods. Because the amount
of memoization memory grows linearly with the number of
graph nodes, Mint stores these data structures in DRAM.

Fig. 8 presents this optimization with an example. Suppose
that an outgoing neighborhood of node 3 is accessed to
expand the blue tree nodes (eg = 15,18). The outgoing
neighborhood of node 3 contains 12 edges with indices
0—47 (shown in pink array). The first time that the search tree
labeled n accesses outgoing neighbors of node 3, it fetches the
entire neighborhood and searches for data elements greater
than eg = 18. The proposed optimization remembers the
index of the first edge that occurs after the eg = 13 of
the root node (last_edge_idx(3) = 6). The next time that
search tree m accesses outgoing neighbors of node 3, it only
fetches all neighbors after index 6. This results in saving 5
unnecessary data fetches, and overall reduction in memory
traffic.

The reason behind using an eg of the root node for
memoization is that all edges searched in any tree is
guaranteed to have higher timestamps compared to the root
nodes’ edges from previous trees. However, as we expand
search trees, there is no relation between the edge timestamps
of non-root nodes in different trees. For example, Fig. 8 shows
that outgoing neighborhood of node 3 is accessed by eg = 18
in the earlier tree and eg = 15 in the latter tree. Therefore,
memoizing the index of edges greater than eg = 18 for search
tree n would result in incorrect result as it would miss an
edge index 17 while expanding the search tree m.
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Graph #Vertices | #Temporal Size | Time span
Edges (MB) (days)
email-eu (em) 986 332.3k 7.6 808
mathoverflow (mo) 24.8k 506.5k 12.0 2350
ask-ubuntu (ub) 159.3k 964.4k 24.5 2613
superuser (su) 194.1k 1.4M 36.0 2773
wiki-talk (wt) 1.IM 7.8M 196.7 2320
stackoverflow (so) 2.6M 36.2M 1493.0 2774
Table I

TEMPORAL GRAPH DATA SETS USED FOR EVALUATION.

B. What Didn’t Work?

In addition to this novel optimization, we try two other
standard optimizations employed by prior graph accelerators:
(a) task coalescing, and (b) prefetching. These optimizations,
however, did not yield reasonable performance improvements.
First, task coalescing attempts to reduce the amount of
memory traffic by coalescing phase 1 search tasks that access
the same node neighborhoods. While in theory it reduces the
number of memory accesses, its performance is very close to
a non-task coalescing baseline because the cache lines only
need to access DRAM once, and subsequent tasks can access
this data from cache. Second, we attempted neighborhood
prefetching for phase 1 and phase 2 of search. However,
a detailed microarchitectural analysis of Mint shows that
search engines are waiting for DRAM accesses for more
than 98% of time and utilize more than 60% of peak DRAM
bandwidth. Adding prefetching hurts performance because
of high bandwidth demand and cache pollution. Therefore,
Mint does not implement these optimizations.

VII. EVALUATION METHODOLOGY
A. Algorithms and Datasets

Algorithms. As discussed in §1I-C, we use a generic, exact
temporal motif mining algorithm for our study. Similar to
prior works [38], [53], we mine four unique motifs (IM1-
M4) from three to five nodes in size (Fig. 9) with 6=1 hour.
Due to long simulation times and limited space, we limit
our evaluation to these motifs. However, Mint is a generic
accelerator, and can be used out-of-the-box to mine any
motif.

Datasets. Similar to prior works [38], [53], we use
six real-world temporal graph datasets for evaluation as
shown in Table I selected from SNAP [34]. These datasets
are diverse in terms of their sizes from small (email-eu)
to large (stackoverflow), and connectivity. email-eu is an
email-exchange network between users at a large European
research institute. mathoverflow, ask-ubuntu, superuser, and

Component H Modeled Parameters

Context Manager
Search Unit
Task Queue

512x context manager instances that updates context memory
512x dispatchers, 512x two-phase search engines

1x queue, 16-entry, 4 B memory per entry,

1 cycle task dequeue latency

512x context instances, each instance has metadata registers,
edge stack, and node connectivity CAM, 2 cycle access latency
64 x cache banks of 64 KB SRAM cache (4 MB total),

4-way set associative, 2 cache ports per bank, 64 B block size,
32 MSHR per bank, 2 cycle access latency

8-channel DDR4-3200, 204.8 GB/s peak bandwidth

Context Memory

On-chip Cache

DRAM

Table II
MINT SYSTEM CONFIGURATION.

stackoverflow are interaction networks between users on
Math Overflow, Ask Ubuntu, Super User, and Stack Overflow,
in terms of comments, questions, and answers. wiki-talk is
a user-editing network of pages on Wikipedia.

B. Baseline Hardware Platforms

To run the software baselines, we use a dual-socket server
with two AMD EPYC 7742 processors, each with 64 physical
cores (128 SMT threads). The aggregate Last Level Cache
(LLC) size on each CPU is 256MB. The main memory in the
system is 8-channel DDR4-3200 with a 1.5TB capacity. As
shown in §III-B, the performance of temporal motif mining
does not scale linearly with the number of threads. For each
workload, we sweep the number of threads from 1 to 256,
and choose the best-performing configuration for comparison.
In addition to the CPU baseline, we compare the performance
of Mint with an NVIDIA GeForce RTX 2080 Ti GPU.

C. Simulation Infrastructure

Table II shows the system configuration of Mint. It
employs one task queue, and 512 context managers, search
engines and context memory instances as detailed in §V-A.
We use a 64-bank 64 KB on-chip SRAM cache (4 MB total),
and 8-channel DDR4-3200 DRAM (same as CPU baseline).

To accurately estimate the performance of Mint, we
implement a detailed two-phase simulation methodology.
First, we model all hardware components (except caches)
using System Verilog HDL. We synthesize this design using
a commercial 28 nm technology library using the Synopsys
Design Compiler. We use Synopsys PrimeTime for vector-
based power estimation. Using detailed post-synthesis RTL
simulations, we extract the critical path delay of our circuits
and set Mint clock frequency at 1.6 GHz. Additionally,
we collect the power and area numbers using RTL. We
use CACTI [47] to estimate the performance/power/area of
SRAM-based caches.

Second, to estimate end-to-end performance, we implement
a cycle-accurate C++ simulator. This simulator faithfully
models all system components, their RTL-based latencies,
and their interactions. Several microarchitectural events are
modeled in detail, including task queue dequeue, and stalls
due to cache port contention, structural hazards at search
engine, Miss Status Handling Registers (MSHRs) of cache,



and memory controller. To model DRAM, we use Ramula-
tor [29]. We verify simulator functionality by matching its
compute and memory traces with an instrumented software
baseline ensuring no events are missed.

D. State-of-the-art Baselines

Mackey et al. [38] CPU. This is a state-of-the-art generic
temporal motif mining algorithm uses a DFS-based search
tree traversal. We convert their code into a task—centric multi-
threaded implementation (similar to proposed programming
model) using work stealing OpenMP threads.

Mackey et al. [38] CPU w/ Memoization. This base-
line implements our proposed search index memoization
optimization in software on a Mackey et al. CPU baseline.
Memoized indices are stored in a dedicated array in main
memory. Because the indices are memoized based on the eg
of a root node (§VI-A), two search operations are triggered—
one to find the memoization index, and the other to find eg
of the current node. All search operations use binary search.

Paranjape et al. [53]. This is an exact mining algorithm
that first mines static subgraphs, and then resolves temporal
constraints using a dynamic programming problem.

PRESTO [61]. PRESTO proposes a scalable edge sam-
pling technique for approximate mining. It uses Mackey et
al. [38]’s algorithm to mine motifs on a subset of edges.

Mackey ef al. [38] GPU. This is a CUDA implementation
of a state-of-the-art generic temporal motif mining algorithm
running on an NVIDIA GPU. This baseline uses an in-house
implementation as no open-source implementation of Mackey
et al.’s algorithm exists.

Static graph mining accelerator FlexMiner [13]. Al-
though FlexMiner does not support temporal motif mining,
we divide this workload into two phases similar to a baseline
algorithm presented in Paranjape et al. [53]: (1) mine static
subgraphs by ignoring temporal information, and (2) use
results of the first phase to mine temporal motifs by resolving
temporal constraints. We use a state-of-the-art graph mining
framework GraphPi [65] to find the performance of phase 1
on a CPU baseline (§VII-B). To find FlexMiner performance,
we reduce the GraphPi execution time by the highest speedup
reported in FlexMiner (i.e., 40x). We compare this FlexMiner
performance to Mint by conservatively ignoring the execution
time of phase 2, which provides a performance upper bound
for this baseline.

VIII. RESULTS
A. Performance Analysis

Benefit of search index memoization. To find the
performance benefit of search index memoization, Fig. 10
compares the performance of Mint with and without applying
this optimization with Mackey et al. [38]. This figure shows
that, on average, the proposed optimization improves the
performance of Mint from 91.6x to 363.1x. On average,
the proposed optimization improves the performance of Mint

by 4x. The reason behind this performance improvement is
the reduction in memory traffic. Our evaluation shows that
this optimization reduces the memory traffic by 2.8, on
average (up to 30.6x for mining M2 on stackoverflow).

This effect is more prominent for large datasets (wiki-talk
and stackoverflow) because they access large neighborhood
sets, and filter operations lead to severe under-utilization of
memory resources (Fig. 7). Our further investigation shows
that the sizes of the largest 10% of vertex neighborhoods,
which benefit the most from search index memoization,
in wiki-talk dataset are 14.9x-38.6x larger than the four
smaller datasets, on average. Similarly, the largest 10% of
vertex neighborhoods in stackoverflow are 2.6 x—6.7 x larger
than the four smaller datasets, on average. Therefore, search
index memoization is the most effective in large datasets that
significantly reduces futile neighborhood fetches, improving
overall performance. Large vertex neighborhoods in wiki-talk
and stackoverflow datasets further underscore the value of
this optimization.

Comparison with state-of-the-art CPU baselines. Fig. 11
compares the performance of Mint with four state-of-the-art
software frameworks running on CPU. Mint outperforms
Mackey et al. [38] by 363.1x, on average. Note that both
baseline and Mint use a task—centric programming model.
The high performance improvement of Mint over Mackey
et al. is attributed to (a) converting task context updates
to on-chip accesses, (b) domain-specific architecture design
that efficiently executes the algorithm, and (d) search index
memoization that significantly reduces memory traffic. The
second bar (light blue color) shows the performance improve-
ment of Mint over a software baseline that implements the
search index memoization optimization. While search index
memoization reduces the amount of work in the search phase,
it comes at the cost of performing and additional search in
software. As shown in Fig. 11, most of the performance
benefit of proposed optimization in software is offset by the
overhead of an additional search. The figure shows that Mint
outperforms a CPU baseline that implements search index
memoization by 305.9x, on average.

Mint also outperforms Paranjape et al. [53] by 2575.9x,
on average. As shown in prior work [38], Paranjape et al.
suffers redundant computation when the number of static
subgraphs are higher than temporal motifs as it mines static
subgraphs before resolving temporal constraints. Additionally,
Mint benefits from an optimized programming model and
domain-specific hardware design. The open-source implemen-
tation [52] of Paranjape et al. does not support M3 and M4;
we limit our comparison to M1 and M2. PRESTO [61] is an
approximate algorithm that samples temporal edges and runs
exact mining algorithm as Mackey et al. on these edges. The
goal of PRESTO is to achieve better scalability by mining
motifs on a subset of edges. Fig. 11 shows that Mint, despite
using an exact algorithm, outperforms PRESTO by 16.2x,
on average. Because PRESTO is an approximate algorithm,
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Figure 10. Performance improvement of Mint compared to Mackey et al. [38] and average memory bandwidth utilization, with and without the search

index memoization optimization.
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Paranjape et al. [53], PRESTO [61], and a GPU implementation of Mackey et al. The open-source codebase for Paranjape et al. only supports M1 and M2.

its resulting motif counts are mostly within 10% error of
the actual value, whereas Mint mines all motifs. Because
PRESTO also employs the same algorithm for mining motifs
on a subset of edges, Mint can also accelerate PRESTO.
This results shows the value of hardware acceleration that
can achieve both better quality results (by running an exact
algorithm) and superior performance by designing its data
path and memory subsystem to cater to an application’s
unique workload characteristics.

Comparison with a GPU baseline. Fig. 11 shows that
Mint significantly outperforms a GPU implementation of
Mackey et al. [38] algorithm by 9.2x, on average. As
discussed in §III-B, the temporal motif mining workload is
bound by irregular memory accesses and control-flow instruc-
tions. While GPU improves the performance of this workload
over a CPU baseline by offering massive parallelism and
exploiting higher memory bandwidth, the GPU performance
is limited due to the highly irregular nature of this workload
leading to frequent thread divergence and non-coalesced
memory accesses. Mint, on the other hand, further improves
the performance of this workload by optimizing its data path
to address unique workload characteristics of temporal motif
mining. Furthermore, the peak memory bandwidth of a GPU
is more than 3x the peak bandwidth of Mint. Due to high
memory bandwidth utilization of this workload (§VIII-B),
Mint can offer even higher speedup than reported compared
to a GPU in an iso-bandwidth comparison. Moreover, Mint
operates at 50x lower power (§VIII-C) than GPU that uses
250 W.

B Static minining accelerator ~ EEE Mint ~@- Static to temporal count ratio

108
107
108

M1 M2 M3 M4
Motif (Averaged over all datasets)

500

N
o
o

w
1=}
S

N
=}
5}

—
o
5}

o

Geomean

Speedup (x) vs
Mackey et al.
i
1)
Static to temporal count ratio

Figure 12. Performance of a static mining accelerator FlexMiner [13]
and Mint compared to Mackey et al. The secondary y-axis shows the ratio
between static to temporal motif counts. Results averaged over all datasets.

Comparison with a static graph mining accelerator.
We further compare the performance of Mint with a static
mining accelerator FlexMiner [13]. Fig. 12 shows that even
by ignoring the temporal constraint resolution process, Mint
achieves an order of magnitude better performance, on
average, compared to FlexMiner. The figure further shows
that the number of mined static graphs are significantly higher
than the temporal motifs, which results in much more work
for the static mining accelerator to perform. Temporal motif
mining effectively prunes invalid subgraphs that do not meet
temporal constraints, leading to significantly less work. This
result underscores the value of designing a temporal motif
mining accelerator despite the availability of static mining
accelerators [10], [12], [13], [15], [57], [71], [78].
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B. Sensitivity Analysis

To demonstrate the performance sensitivity of Mint, and
the benefit of employing different hardware components,
Fig. 13 shows how the performance, average memory
bandwidth utilization, and cache hit rate changes for varying
number of processing engines/PEs (a PE constitutes a context
manager, a context memory instance, a dispatcher, and a
search engine) and cache sizes for a representative workload
of M1 mining on wiki-talk. The performance is normalized
to a baseline configuration of 1 PE and 1 MB cache. The
performance of Mint scales with the increase in compute
resources and cache size. Specifically, by increasing the
number of PEs by 1024x and cache size by 4Xx, the
performance scales by 75.7x.

Adding compute resources enables exploiting more paral-
lelism, and a larger cache size reduces the memory latency
of the search phase. Scaling compute and memory resources
also scales the memory bandwidth utilization. With fewer
PEs, the workload is bound by the availability of compute
resources that cannot saturate memory bandwidth. Adding
compute resources shifts the workload from being compute
bound to memory bound. Our evaluation shows that with
256 PEs, the workload slowly starts shifting from being
compute to memory bound. With more PEs, Mint hardware
expands multiple search trees in parallel, reducing the cache
hit rate from 83.4% to 60%. However, increased memory and
compute parallelism still improves overall performance of the
workload. Additionally, with high concurrency, the workload
starts experiencing cache port contention that constitutes
0.5% stall cycles for 1024 PEs, 4 MB cache.

C. Area and Power Analysis

Fig. 14 shows the layout of one PE, and the area and
power consumption measurements of a full Mint design

m

Target Motif (1x) < 0.001

Task Queue (1x) <0.01 <0.1
Context Mem (512x) 4.98 265.0
64 KB cache (64x) 19.29 4698.2

Context Manager (512x) 0.36 18.9
Dispatcher (512x) 0.53 17.4

Search Engines (512x) 3.12 67.1

Crossbar (1x) 0.05 0.3
Total 28.3 mm? 51W

*Power is measured at 1.6 GHz

Figure 14.
measurements of an entire Mint design.

Layout of one processing engine (PE) and area/power

based on post-synthesis results on a 28 nm technology
node. The power results includes both leakage and dynamic
power consumption. The dynamic power is averaged over
all workloads. The table shows that Mint consumes an
overall area of 28.3 mm? and 5.1 W power. A majority
of area and power is consumed in on-chip SRAM caches
that reduce the memory latency of search engines. As shown
in Fig. 13, caches significantly improve the performance of
Mint, therefore, their high share of area and power is justified.
The cache consumes approximately equal amounts of power
in dynamic and leakage energies. This is because of the multi-
banked cache design, where all banks consume leakage power,
whereas only one bank consumes dynamic power for each
cache access. This multi-banked design, however, is desirable
to reduce the performance hit due to cache contention.

IX. RELATED WORK

Mint is the first work that designs a novel accelerator
architecture for mining temporal motifs. Below, we compare
Mint with the closest related works.

Software frameworks for static graph mining. Several
software frameworks implement efficient graph mining
algorithms on CPUs and GPUs. Early works [72] enumerate
all possible subgraphs and then rule out invalid embeddings
using isomorphism tests. Recent works [14], [25], [26], [39],
[42], [65] avoid the expensive isomorphism tests and prune
out redundant subgraphs. Other works reduce the memory
consumption of intermediate subgraphs either by relying
on SSD [75] or leveraging algorithmic techniques [16].
Approximate algorithms [24], [54], [58] aim to achieve
better scalability on large graphs by mining subgraphs on
a subset of edges. These frameworks, however, work for
mining subgraphs in static graph inputs, and do not support
temporal motif mining.

Software frameworks for temporal motif mining. As
discussed in §II-C, several software frameworks have been
designed to optimize temporal motif mining. Among these,
a few works [32], [38], [53] propose exact algorithms, while
others [37], [61], [74] achieve better scalability by sampling
and mining only a subset of edges. Mint further optimizes
performance of these software frameworks by proposing a



hardware accelerator. As shown in §VIII, Mint significantly
outperforms state-of-the-art software baselines by 16-2576x.

Hardware acceleration for graph processing. Numerous
acceleration techniques have been proposed to speed up
graph processing on CPUs [4], [7], [46], [70], GPUs [62],
and using dedicated accelerators [1], [2], [8], [9], [20],
[45], [49], [55], [56], [66], [67], [77]. These works mostly
focus on optimizing the irregular memory accesses of graph
processing workloads. As discussed in §I1I-C, the memory
access and computation patterns of temporal motif mining
are unique (e.g., search phase is not present in traditional
graph workloads). Furthermore, a few prior accelerators [1],
[55], [56] employ asynchronous execution models. While
these design philosophies seem similar to Mint on the
surface, the domain-specific nature of accelerators result in
fundamental design differences. For example, Mint uniquely
employs (a) no task insertion back into the task queue,
(b) unique workload division between compute units, (c)
domain-specialized context memory design, and (d) lack of
prefetching and task coalescing (§VI-B) commonly employed
in prior accelerators. Therefore, prior optimization techniques
cannot be directly applied to accelerate temporal motif
mining.

Hardware acceleration for static graph mining. Recent
works propose hardware acceleration techniques for static
graph mining, by either building domain-specific architec-
tures [12], [13], [28], [57], [78] or by offloading the workload
to near-data processing architectures [10], [15], [71]. While
temporal motif mining is analogous to static subgraph mining,
as shown in §III-C, their computation patterns are distinct.
While acceleration techniques for static subgraph mining
focus on optimizing set operations, temporal motif mining
does not employ any set computation. Furthermore, Fig. 12
shows that using static mining accelerators to speed up
temporal motif mining results in significantly more work
and sub-optimal performance. Therefore, prior static graph
mining accelerators cannot be directly used to support the
intricate computation and memory access patterns of temporal
motif mining.

Hardware acceleration for matrix operations. Matrix op-
erations (both dense and sparse) have been heavily optimized
using domain-specific accelerators [21], [50], [68], [80],
GPUs [76], [79], FPGAs [36], and TPU [27]. While these
techniques optimize matrix operations, as discussed in §II-D,
temporal motif mining algorithms do not involve any matrix
operations. In contrast, the studied workload employs unique
operations on temporal graph data (e.g., filtering temporal
edge list, discovering new graph edges based on previously
matched edges, and search backtracking) that cannot be
expressed in terms of matrix operations efficiently. Therefore,
prior matrix acceleration techniques cannot optimize the
workload of temporal motif mining.

X. CONCLUSION

This paper presented Mint—a novel programming model
and hardware accelerator for mining temporal motifs. The
programming model divided the workload execution down
in terms of three fundamental tasks and proposed a task—
centric asynchronous execution model that unlocked massive
opportunities for parallelism. We then proposed a domain-
specific architecture that optimized its data path and memory
subsystem design to best accelerate temporal motif mining
using the proposed programming model. The hardware
accelerator is motif and dataset-agnostic, and can be pro-
grammed to wwmine any arbitrary temporal motif. To further
improve performance, we proposed search index memoization
that significantly reduced memory traffic. Our evaluation
demonstrated that Mint significantly outperformed state-of-
the-art software frameworks by 16-2576x by using 28.3

mm2 area.
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