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Guided diffusion for inverse molecular 
design
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The holy grail of materials science is de novo molecular design, meaning 
engineering molecules with desired characteristics. The introduction of 
generative deep learning has greatly advanced efforts in this direction, yet 
molecular discovery remains challenging and often inefficient. Herein we 
introduce GaUDI, a guided diffusion model for inverse molecular design 
that combines an equivariant graph neural net for property prediction 
and a generative diffusion model. We demonstrate GaUDI’s effectiveness 
in designing molecules for organic electronic applications by using single- 
and multiple-objective tasks applied to a generated dataset of 475,000 
polycyclic aromatic systems. GaUDI shows improved conditional design, 
generating molecules with optimal properties and even going beyond the 
original distribution to suggest better molecules than those in the dataset. 
In addition to point-wise targets, GaUDI can also be guided toward open-
ended targets (for example, a minimum or maximum) and in all cases 
achieves close to 100% validity of generated molecules.

The development of new technologies often hinges on the ability to 
source new functional molecules. Yet molecular discovery remains 
an open challenge for chemists and materials scientists due to the 
difficulty in (accurately) modeling molecular and material proper-
ties. This is often exacerbated by the requirement to fulfill multiple 
demands, which can sometimes be contradictory or even mutually 
exclusive, for example, the need for a catalyst to be both stable and 
active1. The key, therefore, is to find the optimal trade-off between 
multiple molecular properties, such that a given molecule may provide 
the desired function(s).

Finding this sweet-spot first requires identifying the relationships 
between the structure of the molecule and its various properties. To 
do so, traditional approaches for molecular design rely on manually 
constructed heuristics and chemical intuition. In addition to being slow 
and arduous, these are usually limited to relatively simple structure–
property relationships that are relevant within a small chemical space. 
In recent years, generative models2–4—which formulate this chemical 
challenge as an inverse design problem—have been introduced as an 
alternative approach and have become increasingly powerful tools 
for identifying new candidate structures for various applications. As 

summarized in a recent perspective5, generative molecular design has 
been achieved for different applications using a variety of approaches, 
including reinforcement learning6,7, variational autoencoders8,9, gen-
erative adversarial networks10,11, genetic algorithms12–14, normalizing 
flows15 and, most recently, diffusion models16.

Diffusion models have become the leading method for many 
generation tasks, such as image17, video18 and text19 generation. Dif-
fusion models have already shown great promise in chemistry too. 
Some notable examples are Hoogeboom and colleagues’ equivariant 
diffusion model (EDM) for molecular generation16, Xu and co-workers’ 
GeoDiff model for molecular conformation generation20, Thygesen and 
colleagues’ combined crystal diffusion and variational autoencoder 
model for generating 2D materials21 and Jaakkola and co-workers’ Diff-
Dock model, which treats molecular docking as a generative problem22. 
Nevertheless, the full capabilities of diffusion models have not yet been 
tapped as this is still a minimally explored area5. Furthermore, those of 
the existing diffusion models that also perform conditional generation 
use the so-called standard approach16, which has difficulty in learning 
the conditional distribution. They are also limited to only point-wise 
targets, must be retrained to add new properties and cannot train the 
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molecules not found in the training set; (3) uniqueness—the percentage 
of unique molecules among the valid molecules (this reflects the extent 
of repeated molecules in the batch, 100% uniqueness indicates each 
molecule appears only one time). Both novelty and uniqueness were 
calculated with the InChI representations, obtained by converting the 
GOR to a full molecular graph.

As shown in Table 1, both of our trained models succeeded in gen-
erating new molecules for each chemical space. Furthermore, nearly 
100% of the generated molecules were valid, which is an improvement 
over the original implementation16. The difference is probably due to 
the GOR representation, which simplifies the learning (see Supple-
mentary Sections 3 and 4 for more details). It is unsurprising that the 
novelty of generated cc-PBHs is low, as the size of this chemical space 
is smaller and 80% of the molecules in this class already appear in the 
training set. In contrast, both the novelty and uniqueness of the gener-
ated PASs are 100%, which is unsurprising, considering the vastness of 
this chemical space.

We selected REINVENT35 and GraphGA14 to compare the perfor-
mance of our EDM with other generative models; these were recently 
determined to be the two best-performing models for generative 
design of molecules with pharmaceutical relevance36 (we note that 
this was evaluated by the accuracy versus the number of oracle calls, 
a metric that is not applicable in our case). Trained on the same PBH 
dataset, REINVENT achieved 65% validity and GraphGA achieved 11% 
validity of generated molecules. To provide additional context, we 
detail here the reported results of other generative models trained 
and tested on different chemical spaces: the unconditional generator 
G-SchNet37 achieved 66–77% validity; crystal diffusion and variational 
autoencoder model21, which also used a diffusion model, achieved 
validity of 88.9% of the generated molecules, of which 56.3% were 
unique; Laino and colleagues’ variational autoencoder for catalyst 
generation38, which adds a separate predictor network, achieved 84% 
validity and novelty; and Westermayr and colleagues’ high-throughput 
iterative generative method39 generally did not exceed 50% validity per 
iteration step. As each of these methods employed a different model, 
which was trained on and optimized for a different chemical space, 
these values only attest to the overall performance of the respective 
approaches and do not reflect a direct comparison of the models (such 
a comparison can be found in ref. 16).

Guided design of cc-PBHs
Single-objective target. In the next step, we used GaUDI to perform 
guided generation, that is, generation of molecules with desired prop-
erties. As an initial proof of concept, we focused on the simpler class, cc-
PBHs, for which the COMPAS-1x dataset contains a variety of molecular 
properties, including the highest occupied molecular orbital (HOMO) 
energy, lowest unoccupied molecular orbital (LUMO) energy, HOMO–
LUMO gap (HLG), relative energy (Erel), adiabatic ionization potential 
(IP) and adiabatic electron affinity (EA).

To evaluate the conditioning method itself, we compared the 
performance of GaUDI with two other guided diffusion methods (all 
three methods used the combination of the basic EDM and GOR rep-
resentation, allowing us to compare only the guidance algorithm): (1) 
point-wise conditional EDM (that is, standard conditioning)—a straight-
forward approach for conditioning a diffusion model, which condi-
tions the denoiser with the ground-truth properties of the molecules 
at training, with the desired target properties during the generation, 
and (2) equivariant energy-guided stochastic differential equations 
(EEGSDE)40—an approach for conditioning the diffusion process using 
score-based generative modeling through stochastic differential equa-
tions25. For GaUDI, we also evaluated the effect of the gradient scaling s,  
which allows us to tune the strength of the guidance.

All three models were conditioned on LUMO, HLG, Erel, IP and EA, 
and tasked with generating ten-ring cc-PBHs with various combinations 
of target values for these properties, at different levels of difficulty:

generator and predictor on different datasets. The ability to guide a 
diffusion model to sample from a conditional distribution23–25 has not 
yet been fully tested in a chemical context.

In this work, we bridge this gap by designing and implementing a 
guided diffusion model, GaUDI, for the generative design of molecules 
with targeted properties. The name GaUDI combines the acronym 
of guided diffusion with a nod to the famous Catalan architect and 
designer (of buildings, rather than molecules), Antoni Gaudí.

We demonstrate the performance of GaUDI on the use-case of 
polycyclic aromatic systems (PASs)—molecules constructed from 
multiple aromatic rings of varying sizes and atomic compositions. 
Polycyclic aromatic systems, which comprise two-thirds of known 
molecules26, are the cornerstone of organic electronics as they form 
the vast majority of organic semiconductors27–29. New PASs with specific 
properties are therefore crucial for advancing technologies such as 
organic light-emitting diodes, field effect transistors, photovoltaics 
and other optoelectronics30,31.

Trained on a newly generated 475,000 PAS dataset, GaUDI out-
performs other leading diffusion models at both single- and multiple-
objective generation tasks, both in terms of validity and in terms of 
the mean average error. GaUDI affords novel molecules with optimal 
properties, even going beyond the distribution of the original dataset. 
Moreover, when used with the graph of rings (GOR) representation32 
(see below), almost 100% of the molecules generated by GaUDI are 
valid, novel and unique. Furthermore, as opposed to many existing 
methods, GaUDI offers high target function versatility and can be 
tasked with any differentiable target function of single or multiple 
properties, including open-ended targets, for example, finding a mini-
mum/maximum value of the target property even when such a value 
is not known a priori. In this work, we leveraged this feature to train 
GaUDI on data obtained with an inexpensive computational method, 
which captures the same structure–property trends despite having 
different numerical values.

Results
Workflow
Our method uses two pre-trained models to design molecules: the 
first is a generative diffusion model trained to generate unconditional 
samples from a given data distribution and the second is a prediction 
model trained to predict molecular properties.

As in standard diffusion sampling, the diffusion model samples 
from some tractable source of noise and then iteratively denoises the 
signal; however, in contrast to the standard unconditional models, in 
GaUDI the intermediate outputs of the generative model are fed to the 
prediction model, which predicts a predefined set of properties. The 
gradients of a target function of these properties are then used to guide 
the sampling process by adding a correction term in each iteration  
(Fig. 1). In this way, the diffusion generation is biased toward molecules 
with low target-function values (that is, closest to the target), a process 
that is equivalent to sampling from a conditional distribution with 
almost arbitrarily complex conditioning (see below).

Unguided molecular generation
We first demonstrate that the combination of the EDM16 and our GOR 
molecular representation can capture the existing data distribution and 
generate new structures within the chosen chemical space. We trained 
two EDMs on two datasets, respectively, using the GOR as the chemical 
representation: the COMPAS-1x dataset containing cata-condensed 
polybenzenoid hydrocarbons (cc-PBHs)33 and a newly generated PAS 
dataset comprising a diverse set of heterocycle-containing PASs (see 
‘PAS dataset generation’ section in Methods for further details). We 
then generated 1,000 molecules from each model and evaluated the 
success of the generation by: (1) validity—the percentage of valid mol-
ecules as measured by RDKit34 (examples of invalid molecules can be 
seen in Supplementary Section 8); (2) novelty—the percentage of valid 
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 1. Joint distribution (easy): a set of properties sampled from mol-
ecules in the test set.

 2. Marginal distribution (moderate): a set of properties sampled 
from the product of marginal distributions of each property, 
as estimated on the training set. This is a harder task because 
the combination of the marginal property values might be 
infeasible.

 3. Real test case (hard): the properties of pentacene (detailed in 
Fig. 2a). This is a difficult task because the likelihood of locating 
a ten-ring system with similar properties is small, as some of the 
properties are size-dependent.
Table 2 details the evaluation using the validity of the generated 

molecules and the mean absolute error (MAE) relative to the respective 
desired properties (calculated using a property-prediction network, 
described in Methods). The results show that the standard conditional 
method produced a relatively low percentage of valid molecules and 
failed completely when conditioned on harder targets, whereas both 
EEGSDE and GaUDI succeeded in generating molecules even when 
provided with difficult targets. GaUDI also substantially outperformed 
the two other methods in terms of the MAE and successfully found mol-
ecules with the closest properties to the desired ones in all cases. Table 2  
also clearly depicts the trade-off of the gradient scaling s: increasing 
the scaling reduces the number of valid molecules but decreases their 
MAE. Our experience showed that using high values of s and sampling 
multiple molecules helps to find the best molecules.

Global minimum target. One of the main advantages of GaUDI is its 
unique ability to be guided not only toward a specific value (point-wise 
conditioning), but also toward any differentiable function of one or 
more properties, or their combination, for example, the minimum 
or maximum. The COMPAS-1x dataset includes all of the cc-PBH mol-
ecules containing up to 11 rings, which allowed us to design a control 
experiment to evaluate the performance of GaUDI in finding molecules 

at the global minimum of a defined target function. To provide a rel-
evant example, we chose pentacene (Fig. 2a)—one of the most com-
monly used cc-PBHs in organic electronics—as our target. We tasked 
GaUDI with discovering a cc-PBH molecule containing six or more 
rings with the electronic properties of pentacene but with increased 
stability, which would lead to a lower Erel (Erel is calculated for each PBH 
as the energy of the molecule relative to its lowest-energy isomer33; for 
PBHs of the same size, the reference molecule is the same). The target 
function for this purpose was defined as the mean square error of the 
properties LUMO, HLG, IP and EA between the generated molecule 
and pentacene plus Erel:

L = (LUMO − LUMOtarget)
2

+ (HLG −HLGtarget)
2 + (IP − IPtarget)

2

+ (EA − EAtarget)
2 + Erel.

Our expectation, based on our experience with cc-PBHs, was that the 
generated molecules would contain a pentacene moiety (five linearly 
annulated rings) because, as we have previously shown, the major-
ity of electronic properties of cc-PBHs are determined by the longest 
linear motif32,33,41.

As shown in Fig. 2b, the target-function distribution ranges from 
0 to 12.5. Prior to generation, we arbitrarily selected a cutoff value of 
0.5 and identified the molecules with target-function values lower 
than this cutoff (a total of ten molecules, 0.03% of the dataset). We 
then removed these ten molecules with the lowest target-function 
values from the training sets of the diffusion and prediction models. 
Importantly, the same molecules had both the lowest calculated and 
predicted target-function values. We then had GaUDI generate samples 
of 512 cc-PBHs using the described target function and various gradient 
scaling values. As seen in Fig. 2b, setting s to zero (meaning, unguided 
generation/no conditioning) afforded a distribution almost equal to 
the dataset distribution, and the distribution shifted toward increas-
ingly lower target-function values as the value of s was increased. These 
results demonstrate that GaUDI successfully captures the true data 
distribution and that the gradient scaling s can be used to guide the 
generation to molecules with properties closer to the desired values. 
As can be seen, the molecules generated by GaUDI (Fig. 2c, gener-
ated using the described target function and s = 1) do indeed have the 
expected pentacene moiety. Furthermore, all ten molecules with the 
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Targets

Property
distribution

Target

Guided generation

Unguided generation

Fig. 1 | Generation workflow. Top: standard diffusion generation process, the 
noise is iteratively denoised using a neural model μ until a clean sample z0 is 
generated. The iterates zt collectively describe n rings and comprise coordinates 
determining the ring centroid and orientation (six values per ring) and hot-
encoded categorical labels (visualized by different colors). Bottom: the guiding 

mechanism, at each iteration the prediction model y estimates the molecular 
properties, which are then used to calculate the target function ℓ. The gradient ∇ℓ 
of the target function is combined with the output of the denoiser for guidance. 
The graph of rings representation of the polycyclic aromatic chemical space is 
shown.

Table 1 | Performance of unguided generation

Dataset Valid Novel Unique

cc-PBH 99.21% 23.75% 93.41%

PAS 99.71% 100.00% 100.00%

Reported are EDM models with GOR representation for batches of 1,000 molecules 
generated for each of the datasets.
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lowest target-function values were present in the sample obtained 
with s = 1, indicating that GaUDI did in fact reach the global minimum 
of the declared target.

Guided design of PASs
Out-of-distribution generation. Whereas cc-PBHs contain only one 
type of aromatic ring (benzene) and all isomers can be easily enumer-
ated, heterocycle-containing PASs are a vastly larger group. The PAS 
dataset we generated contains approximately 475,000 molecules and 
covers only a tiny fraction of this chemical space, which is infeasible 
to enumerate exhaustively; PASs therefore present a much greater 
challenge for both the learning and the generation processes, but 
also provide much more potential for the design of interesting and 
functional molecules.

The true test for GaUDI is whether it can design better molecules 
than the ones found by combining high-throughput calculation and 

screening. In other words, can it generate molecules that have proper-
ties outside the distribution of the original dataset? To investigate this, 
we first focused on a single property, the HLG, and tasked GaUDI with 
generating molecules with high HLG values. We performed several 
runs to avoid bias in terms of molecular size, each time constrain-
ing the generation to structures with a different numbers of rings. In  
Fig. 3a,b, we show three pairs of PASs of equal size (six-, eight- and ten-
ring systems, respectively); for each pair, the molecule on the left is 
the best PAS found in the dataset and the molecule on the right is the 
best PAS designed by GaUDI (with ‘best’ defined as having the highest 
HLG; properties were calculated with GFN2-xTB, the same level as 
the original dataset). GaUDI consistently returned novel structures 
with higher HLGs than found in the dataset. The generality of these 
results can be seen in Fig. 3c, where we show the effect of the scaling 
factor s on a series of generation batches (only ten-ring systems were 
generated for uniformity between the comparisons). The distribution 
plots show that increasing s afforded molecules with increasingly 
higher HLG values (meaning, lower target-function values). Notably, 
the distribution can indeed be pushed beyond the boundaries of the 
property distribution of the dataset, thus GaUDI can design better 
molecules than those in the original data. Interestingly, it seems that 
the presence of five-membered heterocycles pushes the HLG up. In 
particular, multiple furan moieties are recurring motifs in the high-
HLG structures. Oligofuran molecules have already been recognized 
as promising compounds for organic electronics42,43.

Multiproperty target. Having shown successful single-property 
guided design, we moved to the more challenging task of optimizing 
several properties at once, tasking GaUDI with generating molecules 
with a small HLG, low IP and high EA (a combination of properties 
relevant to narrow-band-gap molecules potentially suitable for pho-
tonics)44. We therefore defined the target function for this purpose 
as ℓ(HLG, IP, EA) = 3 × HLG + IP − EA, using a factor of 3 for the HLG 

HLG: 

LUMO: 

IP:

EA: 

Erel:

a

c

b

1.23 eV

–8.14 eV

11.25 eV

6.27 eV

0.60 eV

ErelHLG LUMO IP EA

2

1

0

–7

–8

–9

11.4

11.1

10.8

6.6

6.3

6

0.8

0.4

0

0.32 0.42 0.47

En
er

gy
 (e

V)

2

1

0.3
0.1

0 2.5 5.0

Dataset

Unguided (s = 0)

GaUDI (s = 0.1)

GaUDI (s = 0.3)

GaUDI (s = 1)

GaUDI (s = 2)

Target-function value
7.5 10.0 12.5

0

Fig. 2 | Guided generation of cc-PBH molecules to global minimum.  
a, Pentacene and its molecular properties calculated with GFN2-xTB.  
b, Distributions of the target-function values for the COMPAS-1x dataset and 
for cc-PBH samples generated by GaUDI with different gradient scalar values 
(individual distributions are normalized to have a unit sum). c, Selected examples 
of GaUDI-generated cc-PBHs at the global minimum of the target function, which 

aims for properties similar to pentacene and minimal Erel (using s = 1). The target-
function value of each molecule is displayed below the molecule. The individual 
properties of each molecule are denoted on the bar plots, color-coded in the 
same colors as the molecules; the left-most (blue) bar represents the value  
of pentacene.

Table 2 | Guided generation performance of the different 
models and of GaUDI with various gradient scaling values

Joint  
distribution

Marginal 
distribution

Test case

Valid MAE Valid MAE Valid MAE

EDM standard 59.3% 0.090 12.9% 0.133 0% —

EEGSDE40 84% 0.158 78% 0.149 90.1% 0.301

GaUDI (s = 0.1) 96.8% 0.109 84.3% 0.165 91.1% 0.256

GaUDI (s = 0.3) 77.3% 0.074 80.4% 0.131 87.3% 0.241

GaUDI (s = 1) 75% 0.056 65.2% 0.119 82.2% 0.211

GaUDI (s = 2) 36.7% 0.039 42.1% 0.107 40.6% 0.183

MAE values are the average of the individual MAEs for the respective properties in the 
respective normalized spaces and are unitless.
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property to better balance the properties, which have different value 
ranges (IP = 10−12 eV; EA = 5−7 eV; HLG = 0−3 eV). There are no specific 
guidelines to constructing the target function. It is possible to change 
the factors to vary the relative importance of the different properties 
and thus achieve different generation outcomes. We note also that the 
Erel property is not applicable for the PASs due to the heterogeneity 
in the numbers of atoms and elements. In Fig. 4 we compare the best 
molecules in the dataset with GaUDI-designed PASs (as determined 
by their target-function value). In contrast to the previous experi-
ment, GaUDI was not able to generate out-of-distribution molecules; 
however, it was able to generate vast numbers of molecules with low 
target-function values. For example, out of all the ten-ring PASs in 
our dataset (70,000 molecules), only 25 have target-function values 
below 3 (0.036%). In a single generation batch of 512 molecules, GaUDI 
generated 159 new molecules with similar target-function values (31%). 
Thus, GaUDI produces a ×861 enrichment, substantially increasing the 
likelihood of identifying promising candidate molecules for optoelec-
tronic applications. It is interesting to note the increased prevalence 
of boron atoms in the generated structures. Boron substitution has 
been recognized as a LUMO-lowering mechanism and, in recent years, 
boron-doped PASs have been incorporated in numerous organic elec-
tronic applications45–48.

Discussion
Molecular design has many inherent challenges—such as discrete 
chemical space, bonding rules and so on—that make it an exceedingly 
difficult inverse design problem. Our presented method, GaUDI,  
provides an efficient tool for design of unknown molecules with desired 
molecular properties.

As with many generative models, one of the limitations of GaUDI 
is the feasibility of the designed molecules. It seems that many of the 
molecules proposed by GaUDI are relatively simple and reasonably fea-
sible to synthesize (for example, Fig. 3b). Further improvements could 

be made by adding constraints to avoid known problematic motifs  
and/or by incorporating a synthesizability score in the target func-
tion (we note no such score currently exists for PASs). Furthermore, 
to improve the performance of the guided generation, an iterative 
process (as in ref. 39) could be implemented, whereby the properties 
and structures of generated molecules are calculated on-the-fly by an 
inexpensive method and added to the training set.

Many generative models have been proposed and have shown 
varying degrees of success. The advantages of GaUDI are the flexibility 
of its target function, its decoupling of the generator from the prop-
erty predictor network and its remarkably high validity of generated 
molecules. This high validity is largely thanks to the GOR representa-
tion, which makes the rules the model needs to learn much simpler. 
As an added advantage, this means that fewer data are needed for 
training. We emphasize that the GOR is, in essence, a coarse-graining 
approach and, as such, is generalizable to other chemical systems for 
which a library of building blocks can be defined. For example, defin-
ing the rings as amino acids or carbohydrates would allow the user 
to generate oligopeptides or glycans, following suitable training. It is 
also possible to define a library of varying motifs (for example, a com-
bination of rings, functional groups and individual atoms). As GaUDI 
only receives the centroids of the rings as input, it has no chemical 
knowledge pertaining to the types of bonds between the nodes. One 
must insert that information when translating the GOR back into a 
complete molecular structure. Further features such as orientation 
or functionalization/substituents can also be incorporated into the 
representation. The approach can therefore be generalized to other 
chemical spaces. Similarly, the model described in this work can also 
be generalized for other tasks. The conditioning method we introduce 
to guide the molecular design can be used to turn any unconditional 
diffusion model into a controllable conditional generative model 
and can be useful in many tasks in computer vision, natural language 
processing and so on.
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GaUDI’s ability to propose new molecules with desired properties, 
even beyond those in the initial training set, contributes to the accelera-
tion of molecular design and discovery in numerous areas of interest, 
including but not limited to organic electronics and optoelectronics. 
Future directions include applying GaUDI to design functionalized 
PASs and peri-condensed PASs. We are also exploring an alternative 
approach in which GaUDI completes a given substructure to a final 
molecule with targeted properties.

Methods
Data
Two datasets were used: the COMPAS-1x dataset33 from the COMPAS 
project and a new PAS dataset we prepared for this work. COMPAS-1x 
contains the GFN2-xTB-calculated structures and properties of 34,072 
cc-PBHs comprising 1–11 rings. Due to the relatively small chemical 
space and high homogeneity of the cc-PBHs, COMPAS-1x contains all 
cata-condensed isomers that are possible for a given number of rings, 
up to 11 rings, using the enumeration scheme implemented by Brink-
mann and colleagues in the CaGe software49. The data in this dataset 
have been described in further detail elsewhere33. The PAS dataset con-
tains the GFN2-xTB-calculated structures and properties50,51 of 474,174 
PASs comprising 1–10 rings. The PASs in this dataset are built from 11 
types of aromatic rings, including heterocyclic components. We refer 
the reader to the next section for further details on the PAS dataset.

PAS dataset generation
The PAS dataset was constructed using a library of 11 types of aromatic 
and heteroaromatic rings, ranging in size from four- to six-membered: 
cyclobutadiene, 1H-borole, pyrrole, furan, thiophene, borinine, 
1,4-diborinine, 1,4-dihydro-1,4-diborinine, pyridine, pyrazine and 
benzene (see Supplementary Fig. 1). These building blocks were cho-
sen due to their prevalence in organic molecules, in particular those 
displaying favorable optoelectronic activity.

To limit the data generation to a tractable region of chemical space, 
we focused only on molecules containing up to ten rings and only on 
cata-condensed systems (that is, each carbon can belong to at most 
two rings). We also enabled the placement of heteroatoms only on 
non-fused bonds (this limits the generated chemical spaces and sim-
plifies the subsequent analysis by keeping a consistent formal charge 
for all systems). To generate the PAS molecules, a SMARTS-based52 
(SMILES53 arbitrary target specification) enumeration was devised to 
incorporate these design principles and construct these molecules 
in a memory-efficient manner. To ensure diversity and remove bias, 
we randomly selected the type and number of heterocycles chosen 
for every molecule. Redundant entries were eliminated using their 
InChi54 descriptors.

A ratio of 10:1 of benzene to all of the other types of rings was used, 
as is evident in Supplementary Fig. 2a, which presents the prevalence 
of the respective rings in the final dataset. Supplementary Fig. 2a also 
demonstrates that the prevalence of the rings is equal (with the excep-
tion of benzene), which implies that the dataset is not biased toward 
specific heterocyclic building blocks. In Supplementary Fig. 2b we 
show the distribution of molecule sizes (as measured by the number 
of rings in the molecule). The largest subset is that of molecules com-
prising nine rings, followed by eight- and ten-ring systems. As the 
number of rings is increased, the number of possible combinations 
grows. It is thus expected that the number of molecules increases 
with the number of rings. The ten-ring family is smaller only because 
we limited the number of entries, due to the higher computational 
cost of calculating these molecules. Finally, the inherently random 
nature of our generation procedure can be observed in Supplementary  
Fig. 2c,d, in which we show the respective distributions of benzene 
rings and heterocycles present per molecule. As can be seen, the mol-
ecules in the dataset span the entire range between 0 and 10 hetero-
cycles/benzenes in a given molecule, which is yet another indication 
of the diversity of the data.
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Fig. 4 | Guided design of narrow-band-gap molecules. a, The molecules with 
the lowest target-function values in the PAS dataset. Gray, benzene; dark blue, 
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green, borole; yellow, thiophene. b, Distributions of the target function for the 

dataset and for GaUDI-generated batches with different gradient scalar values 
(individual distributions are normalized to have unit sum). The distributions 
plotted include data only from valid molecules. c, The molecules with the lowest 
target-function values designed by GaUDI.
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Following enumeration, we used RDKit34 to generate 3D struc-
tures for the molecules, which were subsequently subjected to Riniker 
and colleagues’ experimental-torsion and basic knowledge distance 
geometry)55 and universal force field-based56 pre-optimization. After 
pre-optimizing the molecular structures, they underwent a further 
optimization procedure using GFN2-xTB. Duplicates and molecules 
that failed to converge to reasonable structures were removed. Further-
more, molecules that failed to converge—or converged to structures 
inconsistent with the intended Lewis structure—were also removed. 
The final PAS dataset used in this work comprises 474,174 unique entries 
(corresponding to 22,414 molecular formulae), with geometries and 
properties obtained at the GFN2-xTB level of theory.

Molecular representation
In the field of chemistry, the majority of approaches applying graph 
neural networks use a molecular graph as the molecular input repre-
sentation. In such graphs, the atoms are the nodes, and the bonds are 
the edges (meaning, graph of atoms). In our previous work32, we intro-
duced the GOR representation for PBHs. In the GOR (which can be seen 
in Fig. 1 and in Supplementary Section 3), each node represents a ring 
(the coordinates of the node are the centroid of the ring). In the current 
work, we extended the GOR representation to heterocyclic-containing 
systems by setting the ring type as a node feature. In addition, we 
introduced an additional node for each ring, situated at the location 
of the heteroatom, to note the orientation of each ring within the PAS. 
In the case of two heteroatoms in a single ring, for example, pyrazine, 
only one of the heteroatoms is indicated. This is sufficient because 
our data only contains rings in which the two heteroatoms are at para 
position to one another. In contrast to our previous work, the current 
representation does not include any information on the connectivity 
of rings. This modification is crucial to allow the inverse design to learn 
any connectivity between the rings.

Using the GOR, rather than the graph of atoms, allows the diffu-
sion model to learn a much simpler distribution, because the rules the 
model needs to learn are much simpler than the collection of bonding 
rules required to construct a graph of atoms. This leads to a substantial 
improvement in performance and a reduction in the required compu-
tational resources. It also leads to a much higher percentage of valid 
molecules generated by the model. Importantly, although the GOR rep-
resentation reduces the complexity of the graph, it retains important 
chemical information and provides an adequate representation of the 
molecule, as demonstrated in this work and in our previous report32.

We note that the GOR input for GaUDI is a point cloud and no 
connectivity information is provided. The bonds between neighbor-
ing nodes are only used for visualization (for example, Fig. 1) and for 
translation of the GOR into a full molecular graph. The presence of a 
bond is determined by the node–node distance, where distances within 
certain thresholds are considered to be bonded. These thresholds are 
determined based on the distribution of ring-pair distances extracted 
from the dataset of optimized geometries.

We will denote by the matrix X ∈ ℝn×3  the coordinates of the  
n nodes, and by H ∈ ℝn×c the corresponding node attributes encoded 
as one-hot vectors, with c being the number of classes.

Equivariant diffusion model
Diffusion models17 are a class of powerful likelihood-based generative 
models that have recently been shown to outperform generative adver-
sarial networks57 in image generation tasks23. Diffusion models generate 
samples by gradually removing noise from a signal and their training 
objective can be expressed as a reweighed variational lower bound17.

During sample generation (after the model is trained), we start 
from sampling from q(zT) = 𝒩𝒩(0, I) with z = (X, H) collectively denoting 
both the coordinates and the attributes of a molecule representation 
with a fixed number of nodes. A of zts is then sampled backwards in 
time from a Markov process described by the transition probability 

density q(zt−1|zt), until reaching z0 ≈ q0. The transition probability 
q(zt−1|zt) is approximated using a neural network of the form

pθ(zt−1|zt) = 𝒩𝒩(zt−1;μθ(zt, t),Σt), (1)

where the vector θ denotes the learnable parameters of the neural 
network μθ, and 𝒩𝒩(z;μ,Σ) denotes the Gaussian density with location 
μ and covariance Σ evaluated at point z. An isotropic sequence of 
covariances, Σt = βtI, is typically asserted. A detailed derivation of the 
training and generation algorithm of diffusion models is available in 
Supplementary Section 1.

The probability distribution q0 embodied by the diffusion model 
from which the node coordinates X and attributes H are sampled must 
satisfy two fundamental properties: (1) permutation invariance, imply-
ing that any permutation of the columns of X and H is equiprobable, 
and (2) E(3) invariance, implying that any Euclidean transformation 
(translation and rotation) of X is equiprobable.

We chose to use the E(3) EDM16 employing the E(n) equivariant 
graph neural network (EGNN)58 to satisfy the desired properties of 
pθ(zt−1|zt) and, consequently, of q0.

Conditional generation
To bias (guide) the generation process toward desired molecular prop-
erties y, one can attempt sampling from a conditional distribution 
q0(z|y). This can be achieved by providing the values of y for every 
training sample during training. Hoogeboom et al.16 showed that, in 
practice, such an approach has ample space for improvement16. One of 
the reasons for its lack of success is the fact that conditional distribu-
tions are much harder to model. Another major shortcoming of the 
method is that the type of conditioning needs to be known at training. 
Here we focused on an approach for conditioning the sampling process 
on any target function of y post-training.

In developing our method, we were inspired by the classifier 
guidance proposed by Dhariwal and Nichol23 and adopted it due to 
its simplicity23. Nevertheless, it is important to note that Song et al.25 
developed a similar approach from a very different perspective25. 
In classifier guidance, to sample from the conditional distribution 
p(zt−1|zt, y), one can use the Bayes rule to show that

p(zt−1|zt,y) ∝ p(zt−1|zt)p(y|zt−1). (2)

It is typically intractable to sample from this distribution exactly, but 
it has been shown that it can be approximated as a perturbed Gaussian 
distribution59: instead of predicting the previous timestep zt−1 from 
timestep zt using a Gaussian distribution

pθ(zt−1|zt) = 𝒩𝒩(μ,Σ), (3)

one can transform it, using equation (2), into

pθ(zt−1|zt,y) = 𝒩𝒩(μ + Σg,Σ), (4)

where g = ∇zt−1 logp(y|z = μμμ). For a full derivation, refer to Section 4 in 
the work by Dhariwal and Nichol23.

Dhariwal and Nichol23 only considered the scenario in which  
generation is guided toward a desired class, and therefore use the logits 
of a classifier network as logp(y|xt) . We extend this formulation to  
any differentiable target function f(z, t) we want to minimize by defining 
logp(y|z) = −f(z, t) + const , where the constant is due to the density 
normalization factor and can be ignored when considering the gradient 
g = − ∇zf(z, t) evaluated at z = μ. The entire conditional sampling pro-
cess using our guidance method is summarized in Supplementary 
Algorithm 1. Note that we include an optional scaling factor s for  
the gradients. Observe that s∇z logp(y|z) = ∇z logp(y|z)

s + const. When 
s > 1, this distribution becomes sharper than the original p(y|z).
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Target function
To guide the molecular generation toward desired properties, we use 
a target function of the form f(zt, t) = ℓ(ŷ(zt, t)), where ŷ is a (forward) 
model that receives the molecular representation and predicts its 
property y, and ℓ is a loss function that assigns lower values to mole-
cules satisfying the desired properties. Note that the target function 
is conditioned on the time and, thus, needs to be able to assign scores 
to noisy inputs at any timestamp during the denoising process. We 
therefore train a time-conditioned structure–property prediction 
model ŷ(zt, t) on noisy samples using the same noise scheduler of the 
diffusion model.

In all of our experiments, we implemented the time-conditioned 
prediction model using the same EGNN58 architecture as the net-
work used to approximate the diffusion dynamics, and trained it by 
minimizing

𝔼𝔼t∼𝒰𝒰𝒰0,T],(z0 ,y)∼q0(z,y),zt∼qt(zt |z0) ℓ(ŷϕ(zt, t)) (5)

over a set of parameters ϕ. Note that the unconditional generator is 
pre-trained and the predictor is trained once to predict a set of desired 
properties. Then, any combination of target properties can be used 
to guide conditional sampling as long as the conditioning can be 
expressed through a loss function ℓ.

Models and training hyperparameters
Diffusion model hyperparameters. We trained the EDM16 model 
with the Adam60 optimizer with a learning rate of 0.0001 for 1,000 
epochs and 1,000 timestamps. The dynamics in EDM are approximate 
with an EGNN network58. We used an EGNN with nine layers, each with  
192 features.

Prediction model hyperparameters. For the prediction model, we 
used an EGNN network58. We train it with the Adam60 optimizer with 
a learning rate of 0.0006 for 1,000 epochs. We used an EGNN with  
12 layers, each with 192 features.

Data availability
All data for cc-PBHs used in this project were obtained from the  
COMPAS project33, a freely available data repository at https://gitlab.
com/porannegroup/compas. All PAS data are available free of charge 
at https://doi.org/10.5281/zenodo.7798697 (ref. 61). Source Data are 
provided with this paper.

Code availability
All codes used to train the models and generate molecules are provided 
free of charge at https://gitlab.com/porannegroup/gaudi (minted version  
https://doi.org/10.5281/zenodo.8311764)62. The repository also  
contains an original tutorial for generating GOR representations of 
PASs and for generating new PASs with user-defined target functions.
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