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Hamiltonian Operator for Spectral
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Laplace-Beltrami operator. In this paper, we propose to adapt the classical Hamiltonian operator from quantum mechanics to the field
of shape analysis. To this end, we study the addition of a potential function to the Laplacian as a generator for dual spaces in which
shape processing is performed. We present general optimization approaches for solving variational problems involving the basis
defined by the Hamiltonian using perturbation theory for its eigenvectors. The suggested operator is shown to produce better functional
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Abstract—Many shape analysis methods treat the geometry of an object as a metric space that can be captured by the
spaces to operate with, as demonstrated on different shape analysis tasks.
Index Terms—Hamiltonian, shape analysis, mesh representation, compressed manifold modes, shape matching
+
1 INTRODUCTION

HE field of shape analysis has been evolving rapidly

during the last decades. The constant increase in com-
puting power allowed image and shape understanding
algorithms to efficiently handle difficult problems that
could not have been practically addressed in the past. A
large set of theoretical tools from metric and differential
geometry, and spectral analysis has been imported and
translated into action within the shape understanding
arena. Among the numerous ways of analyzing shapes, a
common one is to embed them into a different space where
they can be processed more efficiently.

1.1 Related Efforts
Elad and Kimmel [1] introduced a method for analyzing sur-
faces based on embedding the intrinsic geometry of a given
shape into a euclidean space, extending previous efforts of
[2]. Their key idea was to consider a shape as a metric space,
whose metric structure is defined by geodesic distances
between pairs of points on the shape. Two non-rigid shapes
are compared by first having their respective geometric
structures mapped into a low-dimensional euclidean space
using multidimensional scaling (MDS) [3], and then comparing
rigidly the resulting images, also called canonical forms.
Memoli and Sapiro [4] proposed a metric framework
for non-rigid shape comparison based on the Gromov-
Hausdorff distance that was suggested by Gromov as a theo-
retical tool to quantify disimilarity between metric spaces.
Using the Gromov-Hausdorff formalism, the distance bet-
ween two shapes is defined by matching pairwise distances
on the shapes. However, the Gromov-Hausdorff distance is
difficult to compute when treated in a straightforward
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manner. To overcome this difficulty, Bronstein et al. [5] pro-
posed an efficient numerical solver based on a continuous
optimization problem, known as Generalized MDS (GMDS).

In the past decade, the Laplace-Beltrami operator (LBO)-the
extension of the Laplacian to non-euclidean manifolds, has
become growingly popular. Its properties have been well
studied in differential geometry and it was used extensively
in computer graphics. The LBO can be found in countless
applications such as mesh filtering [6], mesh compression
[7], shape retrieval [8], to name just a few. It has been widely
used in shape matching where several approaches treat the
correspondence problem by comparing isometric invariant
pointwise descriptors between the two shapes. For example,
the Global Point Signature (GPS) [9], the Heat Kernel Signa-
ture (HKS) [10] and the Wave Kernel Signature (WKS) [11],
all use the eigenfunctions and eigenvalues of the LBO to
compute local shape descriptors. Matching only signatures
at a small set of points, the correspondence between the
points on the two shapes can be found. These points can
serve as anchors and interpolated for the entire shape [12]
where refinement of the basis can be performed to produce
precise dense correspondence [13], [14], [15].

Recently, learning based approaches [16], [17], [18] have
also become highly popular in the shape matching arena.

The use of the basis defined by the LBO is in many senses
a natural choice for surfaces analysis. It was chosen in the
functional map framework [13] because of its compactness,
stability, and invariance to isometries. Subsequently, it was
proven to be optimal [19] for representing smooth functions
on the surface. In an attempt to overcome the topological
sensitivity of the LBO and the non-local support of its eigen-
functions, compressed eigenfunctions have been adapted
from mathematical physics to shape analysis [20], [21].
Here, we try to find a richer family of basis functions that
are based on intrinsic properties that can go beyond the
geometry of the shape. Exploring a similar goal, [22] com-
bined geometric and photometric information within a uni-
fied metric for shape retrieval.

Related to the proposed method, [23] used artificial
surface textures on shapes to define elliptic operators that
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give birth to a new family of diffusion distances. Along a
similar line of thought, [24] designed a new family of eigen-
vibrations using extrinsic curvatures and deformation ener-
gies. These methods involved applications where specific
information such as photometry or curvature can be incor-
porated to the Laplacian. Recently, [25] extended the frame-
work suggested in this paper by introducing a localized
basis orthogonal to the first LBO eigenfunctions.

We suggest to further explore these ideas [23], [24] and
axiomatically construct a so-called potential that is added to
the Laplace Beltrami operator. The perturbation of the Lap-
lacian allows us to control the vibration modes on the mani-
fold in order to improve performance compared to those
obtained by the classical Laplace operator.

1.2 Contributions

The main contribution of this paper is the exploration of the
Hamiltonian operator on manifolds. We study spectral proper-
ties of the operator and the impact of an additional potential
function to the Laplacian for shape analysis applications. The
properties of the Hamiltonian allow it to be efficiently utilized
by many spectral-based methods. The potential part can lead
to a more descriptive operator when treated as a truncated
basis generator. Modulated harmonics on the surface are
obtained by treating different regions of interest as different
values of the potential. We show that using the resulting basis
can improve the performance of classical spectral shape anal-
ysis methods. The rest of the paper is organized as follows: in
Section 2, we propose to study the Hamiltonian on manifolds
from the variational calculus point of view with motivation
from quantum mechanics. We prove optimality properties of
its eigenspace, characterize the associated diffusion process,
the resulting nodal sets, introduce a discretization method
and analyze the robustness of the operator.

In Section 3, we propose a global optimization frame-
work for variational problems involving the basis defined
by the Hamiltonian. We provide an approach for computing
derivatives with respect to the potential based on eigenvec-
tors perturbation theory. We demonstrate the effectiveness
of the framework on the task of data representation.

In Section 4, we review recent improvement of the com-
putation of the compressed modes [26] that make use of the
decomposition of the Hamiltonian. Finally, in Section 5 we
present properties of the proposed basis that make it a bet-
ter alternative for the task of shape matching where priors
can be inserted through the potential in order to improve
performance.

2 HAMILTONIAN OPERATOR

2.1 The Laplace Beltrami Operator

Consider a parametrized surface M : Q) C R* — R? with a
metric tensor (g;;). The space of square-integrable functions
on M is denoted by L*(M) ={f: M —R] [,, fPda < oo}
with the standard inner product (f, g) , = [, fg da , where
da is the area element induced by the Riemannian metric
(), The Laplace Beltrami Operator [27] acting on a scalar

function f € L*(M) is defined as

i
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where g is the determinant of the metric matrix and (¢") =
(95)"" is the inverse metric. If M is a domain in the (flat)
euclidean plane, the metric matrix is generally the identity
matrix and the LBO reduces to the well-known Laplacian

Ff S
Af=—=5+—5. 2
f a2t o @)

The LBO is self-adjoint and thus admits a spectral
decomposition {\;,¢;}, where \; e R and 0=\ < Ay <

... ] oo, such that,
(DisDj) i = Bij-

with §;; the Kronecker delta. In case M has boundary, we
add homogeneous Neumann boundary condition

(3)

(Vi) =0 on M, @

where 7 is the normal vector to the boundary M.
The LBO eigendecomposition can be extracted from the
Dirichlet energy minimization

Z V j 2 d bl
;/M Vsl de ®)
s.t. (i, ®j) pq = i

Here, each ordered eigenfunction composing the basis on the
manifold corresponds to the function with the smallest pos-
sible energy (smoothest) that is orthogonal to all the previous
ones. Therefore, the LBO eigenfunctions can be seen as an
extension of the Fourier harmonics in euclidean spaces to
manifolds and are often referred to as Manifold Harmonics [6].

min
¢.

i

2.2 Hamiltonian
A Hamiltonian operator H on a manifold M acting on a sca-
lar function f € L?(M), is an elliptic operator of the form

Hf = —-Apmf+ VY, (6)

where V : M — R is a real-valued scalar function. It plays a
fundamental role in the field of quantum mechanics appear-
ing in the famous Schrodinger equation that describes the
wave motion of a particle with mass m under potential V,

) O

ih = O AV + VY, (7)
where © is the Planck’s constant and W (z, t) represents the
wave function of the particle such that |¥(z,t)[* is inter-
preted as the probability distribution of finding the particle
at a given position z at time ¢.

The Schrodinger equation can be analyzed via perturba-

tion theory by solving the spectral decomposition {v;,
E;}:°, of the Hamiltonian

Hy; = Eiy; ®)

also known as the time-independent Schrodinger equation,
where F; is the eigenenergy of a particle at the stationary
eigenstate ;.

Since the potential V' is a diagonal operator, the Hamilto-
nian is self-adjoint as a sum of two self-adjoint operators
and its eigenfunctions form a complete orthonormal basis
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Fig. 1. Influence of different potentials on the harmonics in one
dimension.
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on the manifold M. As a generalization of the regular Lap-
lacian, its spectral theory can be derived almost straightfor-
wardly from that of the latter. Classical examples of the
influence of potential functions in a one-dimensional euclid-
ean domain are depicted in Fig. 1.

2.3 Variational Principle
Let us consider the following variational problem

min
v/,

i

i ) )
> [ (mi v
s.t. <1//17 w]>M = 8”‘7

whose the Euler-Lagrange equation defines the eigende-
composition of the Hamiltonian defined in (8).

The basis defined by the Hamiltonian operator corre-
sponds to the orthogonal harmonics modulated by the pote-
ntial function. The potential defines the trade-off between
the orientation and the compactness of the basis and its
global support. Larger values of the potential will enforce
smooth solutions that concentrate on the low potential
regions, while smaller ones will give solutions that better
minimize the total energy at the expense of more extended
wave functions.

2.4 Finite Step Potential

The time-independent Schrodinger equation can yield a
rather complicated problem to solve analytically, even in
one dimension. Let us consider a system with an ideal step
potential in one dimension [28]. We need to solve the differ-
ential equation HV¥ = EV, with I denoting the energy of
the particle, and V the Heaviside function with step of mag-
nitude V; > 0, at point xz, given by

Vo, otherwise. (10)

V(x):{(), x < T

The step divides the space in two constant-potential regions.
At the zero potential region, the particle is free to move and
the harmonic solutions are known. In the high potential
region, on the other hand, for £ < 1}, the solution is a
decaying exponentially, meaning that the particle cannot
pass the potential barrier and is reflected according to classi-
cal physics. If £ > V}, the solution is also harmonic, which
means there is a probability for the particle to penetrate into

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 2, FEBRUARY 2020

@ i

\4 Y1 P2 vs ¥7 L2

Fig. 2. Absolute values of the 1%, 2nd 5th 7th gth and 11th eigenfunctions
{¢;} of the LBO (top). Absolute values of the corresponding eigenfunc-
tions {y,} of the Hamiltonian with a step-function potential V' (bottom
left), with step value V;) = 0.01. For this potential, the first eigenstate v,
with energy E; greater than 1} is the eighth. As analyzed, the eigenfunc-
tions corresponding to lower eigenenergies are restricted to the region
with V' = 0, while the higher ones can have effective values (and oscil-
late) at the V' =1, > 0 region. An evanescent wave can be observed at
the seventh eigenstate.

the effective potential region with a different energy than
that of particles in the zero potential region. We illustrate
this effect in Fig. 2 by numerically computing the eigenvec-
tors of the LBO and the Hamiltonian with a potential V'
defined on a human body surface.

Therefore, the potential energy can be tuned to enforce
localization of the basis at the expense of loss of smoothness.

Theorem 1. Let {¢;, \;}io; and {y;, E;}:2, be the spectral
decompositions of the Laplacian, and the Hamiltonian, respec-
tively. Then, V' > 0 everywhere on the manifold implies that
the eigenvalues E; satisfy

max(V) + A\, > E; > min(V) + A; > 0.
M M

Proof. According to the Courant-Fischer min-max theorem,
we have

\% ) 2 + Vv 2 da
E; = max min{fM(” MP. HQQ ;) }
codh%A:z z’;g f/\/l (pl da
. fM(HVM%|§+HlinM(V)<ﬂ?)da} (11)
> max min 2
wimei 95 Ju #ida
=\ + min(V).
M
Similarly,
Vg |2 + max (V)g?)da
E; < max min{fM(” milly o Mm(V)e;) }
codimA=i z;iﬁ fM §07 a (12)

= \; + max(V).
M
a

Since the family of eigenvalues of the Helmholtz
Equation (3) consist of a diverging sequence (A, xn as n —
oo [29]), there exists an ¢ such that E; > \; + miny(V) >
maxy(V) and the trade-off between local-compact and
global support of the basis elements can be controlled by the
potential energy. Then, we can estimate the magnitude of the
potential required in order to allow for oscillations outside
the regions where the potential vanishes.
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Given a scalar £ € R' we can define the Hamiltonian as

H,=—-Apm+uV, (13)

where p controls the resistance to diffusion induced by the
potential. Let \; and E; be the ith eigenvalue of the LBO and
Hamiltonian, respectively. We seek a constant p such that
E; > maxy(uV) so the particle can penetrate the high poten-
tial region. Considering the potential as small perturbation of
the Laplacian, up to first order, the eigenenergies are defined
as E; = A\ + (¢;, Vo;) o~ In order to contain the basis sup-
port at most until the ith eigenfunction, u must satisfy

Ai
max (V) —

n < (14)

According to its potential energy, the basis can then provide
supervised multiresolution analysis on the manifold by con-
taining the first eigenfunctions and allow global analysis for
the following.

2.5 Optimality of the Hamiltonian Eigenspace

Let us consider a function f € L*(M). We define the repre-
sentation residual function as

2

7l = Hf > bt
i=1

, M (15)

=3 ok

M i=n+1

i (f: i) @i

i=n+1

when the second and the third relations are obtained from
the completeness and orthonormality of the basis, respec-

tively. Defining ||V, f[}, = Ju ||ng\|3da, we know that

IV f 120+ VP2, = /44<—AMf L VI)f da

=3 [ (daEa)f da= Y B o)
i=1 i=1
> N B = B Y (L)
i=n+1 i=n+1
Thus, from (15) and (16) we obtain
V,
a3, = Hf Z L) Mw, 2 Jf”MEi”l‘Ff”M an

Recall that for V' = 0 we return to the LBO case. Among the
numerous reasons that motivated the selection of the Lapla-
cian for shape analysis, a major one is its efficiency in repre-
senting functions with bounded gradient magnitude. This
result was subsequently proved to be optimal for repres-
enting functions with bounded gradient magnitude over sur-
faces in [19], which says that there exists no other basis with
better representation error for all possible L?(M) functions.
In case of the Hamiltonian, the Dirichlet energy is
coupled with the potential energy. Thus the Hamiltonian
operator advocates measuring smoothness differently for
different regions of the domain where smoothness remains
a less important factor than avoiding vibrations in high
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potential areas. This is a useful property to exploit in differ-
ent shape analysis scenarios.

Next, we show that the Hamiltonian is optimal in
approximating functions with both bounded gradient and
low values in high potential areas.

Theorem 2. Let 0 <« < 1. There is no integer n and no
sequence {v;};, of linearly independent functions in Lo(M)
such that

" 2 a(lIVefl + IV IR
Hf—ZU, Vidm ( )
i=1

= E
M n+1

Vi (18)

The proof of Theorem 2 is given in the Appendix, which
can be found on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/10.1109/TVCG.2018.
2867513.

2.6 Diffusion Process
Let us be given a Riemannian manifold M. A natural
extension of the heat equation governing the diffusion
process with the new operator given a potential V, can be
written as

{ du(z,t) = Hu(w,t)

= Apu(z, t) — V(z)u(x,t)

u(z,0) = uo(z). o
with appropriate boundary conditions. The solutions of (19)
have the form [23]

u(z,t) = / uo(y) K (z,y, t)da(y), (20)
M

that represents the diffusion in time of heat on the manifold
M with potential V, where K(z,y,t) =Y, e “ily, (x)y;(y).
We refer to K(z,y,t) as the heat kernel. A standard proof is
given in the Appendix, available in the online supplemental
material.

According to the Feynman-Kac formula [30], the solution
of the diffusion process is expressed in terms of the Wiener
process,

u(z,t) 21

t

=E(uy(X;)ex X)dt )| Xy =x).

(wo(Xep( [ Vi) xi =)
In the Laplacian case, the initial value uy(z) is carried over
random paths in time, while the expected value of the sto-
chastic process is equal to the solution u(x,t). For V' > 0,
the diffusion spreads according to the potential on the man-
ifold, when the transported value is modulated exponen-
tially by the potential V, diffusing anisotropically to low
potential regions, as shown in Fig. 3.

2.7 Nodal Sets

An interesting property of the Laplacian is the relation
between its eigenfunctions, the number of connected nodal
(zero) sets, and the number of complementary regions they
define. Given an eigenfunction v, : M — R, a nodal set is
defined as the set of points at which the eigenfunction val-
ues are zero. That is,

N (@) = {x € Mly;(z) = 0}.

The Nodal Theorem [31] states that the ith eigenfunction of
the LBO can split M to at most ¢ connected sub-domains. In

(22)
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Fig. 3. Heat diffusion with a delta function at the centaur’s head as initial
condition. The diffusion is derived from the LBO (top) and the Hamilto-
nian (bottom) for different values of ¢. The potential V used in this exam-
ple is the geodesic distance from the front left leg. A signature extracted
from a diffusion process using the Hamiltonian is more descriptive and in
this case allows to resolve ambiguities due to symmetry.

other words, the zero set of the ith eigenfunction can sepa-
rate the manifold into at most ¢ connected components.

Proposition 1. Given the self-adjoint Hamiltonian operator H
on M, with arbitrary boundary conditions; if its eigenfunctions
are ordered according to increasing eigenvalues, then, the nodal
set of the ith eigenfunction divides the domain into no more
than i connected sub-domains.

The proof is essentially the same as that of the Laplacian
case. See [31] Vol.1 Sec. VL6 for a proof.

As shown in Fig. 2, the Hamiltonian eigenfunctions are
tuned by the potential. Thus, shape segmentation can be
obtained by separating the surface according to the induced
nodal sets as described in [32]. Given a potential V' defined
on the surface, a semantically meaningful segmentation can
be induced by the nodal domains of the resulting eigenfunc-
tions, as presented in Fig. 4. One can observe that the nodal
set is determined by the selected potential. The potential
can be derived from the natural texture or albedo of the
given shape, or any other intrinsic or extrinsic quantity as
will be exemplified for other tasks in the reminder of this

paper.

2.8 Discretization

In the discrete setting, we consider a triangular mesh M in
R? with the associated space of functions that are continu-
ous and linear in every triangle. According to the Finite Ele-
ment Method (FEM) [33] , the solution of the Hamiltonian
eigenvalue problem (8) can be computed by imposing that
the equation Hf = Ef is satisfied in a weak sense. Since the
Hamiltonian is a linear operator we have

where ¢; denote the Lagrange basis of piecewiselinear hat-
functions on M. The matrix representation of (—Axf, ¢;) v
and A(f, ;) with respect to the Lagrange basis are well
known [34] and define the stiffness matrix W and the mass
matrix A with the entries

Wi = <V‘Pivv‘/’j>/\4 and A;; = <<Pz7¢’j>/\4 (24)
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Fig. 4. Nodal domains obtained from the nodal sets of the Hamiltonian
N (y;)(second and third columns) and the LBO N (¢;) (fourth and fifth
columns) for different nearly isometric shapes. We used two different
potentials V' that are depicted in the first column. One can observe the
segmentation induced by the nodal sets of the Hamiltonian.

Thus,
VEom =2 (VEe)r =D 3 flVen e
TeM TeM i (25)
- Z ZZM i 05)r = AV f.
TeM i

The first equality is obtained by discretizing the the bilinear
form (-, -) \, by splitting the integrals into a sum over the trian-
gles T" of M. The last equality is obtained by representing the
potential function V' as a diagonal matrix V" according to the
Lagrange basis functions. The discretization of the eigenvalue
problem (8) is defined by finding all pairs { £, '} such that
Hyr =Wy + AVy =

(W + AV)¢ = EAY. (26)

Efficient solution methods can be found in [6]. Among the
possible explicit representations of the matrices A and W,
we use here the cotangent formula [34], [35] where the stiff-
ness matrix is defined as

W, = _Z]¢7W’LJ7 ’L:j,(l,])eNL
v (COtaij + COtﬁij)/Qﬂ i 7& ja (Zaj) € Ni7

with N; = {j: ({,7) € I'}, where I' is the set of edges of the
triangulated surface interpreted as a graph and o, 8;;
denote the angles Zikj and /jhi of the triangles sharing the
edge ij. The mass matrix is replaced by a diagonal lumped
mass matrix of the area of local mixed Voronoi cells about
each vertex m; [35]. The manifold inner product is discre-
tized as (f,g), = f' Ag. Since V only modifies the diagonal
of W, our operator remains a sparse matrix with the same
effective entries, and thus, there is no increase in the compu-
tational cost of the generalized eigendecomposition com-
pared to that of the LBO.

(27)

2.9 Robustness to Noise

As a generalization of the Laplacian, the Hamiltonian exhib-
its similar robustness to noise. Consider the Hamiltonian
matrix H = A~ (W + AV) with V the potentlal Then, the
perturbed Hamiltonian has the form H = A~ (W+AV)
Let us define 84 =|A—A| and 8y = |(W — W) + (AV—
AV)|. Based on perturbation theory [36], and up to second-
order corrections, the ith eigenfunction ¥; of H has the form
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ey
e
A

Fig. 5. Robustness to noise of the Hamiltonian. First eigenfunctions v, of
the Hamiltonian under potential V' (top). First eigenfunctions v, of the
Hamiltonian subject to Gaussian noise in positions of the vertices and
the potential (middle). First eigenfunctions v, of the Hamiltonian subject
topological noise (bottom).

- ¥ da ¥ (8w — Eida) ¥y
Wi_wi(l_iz >+kz#: B — Er

¢
i
!

14 1/;1

Pa

Y (28)

with ¥; and E; being respectively the ith eigenfunction and
eigenvalue of the unperturbed Hamiltonian. Assuming uni-
formly distributed random noise on the mesh, the eigen-
functions of the regular Laplacian may present smaller
distortion to noise than the Hamiltonian since the perturba-
tion is amplified by area and potential distortions. Still, in
case of potential with small values the distortion is insignifi-
cant. In Fig. 5, we present the original surface and its noisy
version in which vertex positions have been corrupted by
additive Gaussian noise with o2 = 20% of the mean edge
length. The potential is also modified by adding a Gaussian
noise with o?, = 20% of the initial variance of the potential.

The construction of the Laplacian depends crucially on
the mesh connectivity making it sensitive to topological
noise such as holes and part removal that can be found in
many depth acquisition scenarios. The compact support of
the basis elements of the Hamiltonian makes it robust to
noise compared to the basis elements that are generated by
the Laplacian. We illustrate the robustness property in
Fig. 5 where 30 percent of the surface area was removed
due to topological noise in the form of small holes.

3 OPTIMIZATION OF THE POTENTIAL

One natural problem emerging when working with the
Hamiltonian is the ability to define an optimal potential
function for a specific task. The choice of the potential is
application dependent but can be represented through min-
imization problem generically defined as
min D(X,V)
v (29)
s.t. V eR",
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where D(X, V') denotes the data term depending on the data
matrix X and the vector V' defining the diagonal potential
matrix. Regularization terms can be further be added. If the
analytical solution remains complex, a common approach is
to minimize the goal function with an optimization algo-
rithm involving the gradient of the goal function with respect
to the potential. In this section we propose an optimization
framework based on perturbation theory of the eigenvectors
where optimal potential is obtained. To that end, we need to
derive the gradient Vy D for a given objective D.

Here we will consider the problem of data representation
using the discrete basis of the Hamiltonian referred to as
W, (V) = ¥, € R™* representing the k eigenvectors of the
Hamiltonian such that ‘Isz‘I'k = I;. The discretized mini-
mization problem is defined as

min ||V, PTAX - X
1 i A 30)
s.t. V eRrR",
with k < n and ||-|3 =< -,- >4 the discrete manifold

inner product. The objective defines the representation error
of the data X in the subspace spanned by the columns of ¥,
and in the sense of the Frobenius norm on the manifold
I-l4= HA% - || - For a general orthonormal matrix ¥y, the
problem is equivalent to Principal Component Analysis
(PCA). We can straightforwardly obtain that

L= | WiAX - X|}
= trace((V, ¥} AX — X)"A(V, ¥} AX — X))
= trace( X7 AX) + trace(XT AV, W] AV, W] AX)
— 2trace (XTA‘I’k‘IffAX)
= —trace(“lfk.\lfkT,AXXTA) + trace(XAXT).

(31)

Thus, the differential dL of the loss function L with respect
to V is obtained by

dL = —dtrace(V, Wi AXXTA)
= —trace(dW;, W} AXXT A) — trace(Vd¥; AXXT4) (32)
= —2trace(V] AXXT Ad¥}).

It remains to derive the differential of the Hamiltonian
eigenvectors. Let us consider the full matrix of eigenvectors
¥, e R, the n xn diagonal matrix of eigenenergies
[A]l; =X\ and the discrete Hamiltonian operator H. The
eigenvalue decomposition problem is given by HWV, =
(W + Adiag(V))W¥,, = AW, A. Thus, the differential of the
spectral decomposition problem is given by

dHVY, + HdVY, = A(d¥,A + ¥, dA). (33)
Multiplying by ¥’ on the left side and denoting d¥,, = ¥,,C
[37] with C € R™", we have

VIaHY, + VI HY,C = VI AV, CA + VLAY, dA

. (34)
WIAHW, + AC = CA + dA,

since ‘PZA‘I’,L = I,,. We readily obtain that the off diagonal
elements of the matrix C' can be defined by
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(W) dHW

Cij = NN

Vi # 5. (35)

Here W represents the jth column of the matrix of eigenvec-
tors. The diagonal elements of C are defined by the following

(¥, +d¥,) AV, +dV,) =T

VIAY, + Ul AQW, + AV AV, + d¥! AdY, =T
I+ %AW, C+ CTWIAY, + CTWT AW, C =T
c+c"+c'c=o.

(36)

The diagonal elements are then defined by 2Cj +

w_; C# = 0. Since second order elements are negligible,
we have C(C; =0. We obtain that d¥,=V,C=
v, (WL dHWY,) ® B, with ® denoting the Hadamard product
and the matrix B defined as

Bz]*{g A

The selection of the first k eigenvectors d¥}, are obtained
by multiplying d¥, by the truncated identity matrix
Z = I,,x). The differential is now known and can be plugged
into (32) in order to extract dH, thatis

i 7]

o (37
1=7.

dL = —2trace(V; AXXT Ad¥,)

= —2trace(‘PkTAXXTA‘P,LCZ)

= —2trace(V] AXXT AV, (V! dHV, ® B)Z)
—2trace(V, (ZV] AXXTAV,) © BY!dH)
= (= 2(v, (29T AXX"AV,) © BY)" dH).

The passage in the fourth line stems from the equivalence

(38)

trace(A(B® C)) = trace((A ® CT)B). Since dH = d(W +
Adiag(V)) = Adiag(dV), we obtain finally
VyL = diag( - 2(¥, (Z¥[ XX"V,) © BYTA)).  (39)

Two problems arise from the suggested scheme. First, the
high computational cost of a full (sparse) matrix diagonal-
ization. Second, the matrix C remains undefined when
eigenvectors have non-trivial multiplicities. The first prob-
lem can be relaxed by approximating the matrix d¥ with
less eigenvectors. This is especially justified for distant indi-
ces, where the eigenenergies are well separated and the cor-
responding elements of matrix B become negligible. Also,
the data can be projected onto the LBO basis so the solution
complexity remains constant with the size of the mesh.
Even if the second problem has been treated in [37], it seems
that lack of smoothness at isolated points is not critical for
computation and convergence can be obtained by resorting
to a sub-gradient approach. The alternative opted for here is
to stabilize the matrix B in order to avoid exploding gra-
dients. We use the approximation

1

40
(IAj = Ai] + €) (sign(A; — (40)

B ~ ,
! Ai))
where the sign function is not vanishing.

In the following experiments we allowed negative poten-
tial for performance consideration only, since the potential
is defined over the whole codomain R. Also, for physically
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Vv Laplacian reconstruction

—Data |
—Laplacian recon.|

Vv H reconstruction

—Data i
—H recon.|

Fig. 6. Reconstruction of a linear function using the Laplacian and the
Hamiltonian constructed with the proposed framework. 15 eigenvectors
were used in this experiment. Observe that the potential is high close to
the boundary to reduce the representation error.

interpretable solutions we enforced positive potential by
using quadratic function V2. The extension of the derivation
is straightforward but decreased the performance since it is
more restrictive.

3.1 Experimental Evaluation

As a toy experiment, we propose to find the best potential
for the representation of a function in the one dimensional
euclidean domain. Given a function f € R"”, we seek for the
best potential minimizing W, ¥’ f — f||5. We compare in
Fig. 6 the reconstruction performance on a one dimensional
linear function with the Laplacian and the Hamiltonian
built from the optimized potential.

In Fig. 7, we propose to reconstruct the matrix of coordi-
nates of a mesh so the data matrix is defined by X =
(z,y,2) € R"3. The experiments were conducted using the
quasi-Newton method with initial zero potential, with the
first-order constrained minimization algorithm imple-
mented within MATLAB’s Optimization Toolbox. The con-
stant € is fixed to 1075.

An important application related to data representation is
spectral mesh compression. [7] proposed to project the coor-
dinates functions of the mesh onto the LBO eigenfunctions in
order to encode the mesh geometry via the first coefficients
only. Since most of the function energy is generally con-
tained in the first coefficients, the reconstruction distortion is
low, up to fine details related to higher frequencies. Since
matrix decomposition is an expensive operation, they sug-
gested to segment the shape into smaller parts that can be
processed separately. By sending the mesh topology (trian-
gles) separately, the combinatorial graph Laplacian is built
on the decoder side and the signal can be reconstructed with
the received coefficients. We suggest to apply this idea to our
basis which potential V' is obtained by the proposed optimi-
zation framework. However, one major drawback is that we
need to encode the potential as well as the coefficients. Also,
some methods use the ordering of the vertices in order to
encode information [38]. Here we suggest to reorder the ver-
tices such that the vertex with the smallest potential is be
assigned the index 1 and the vertex with the largest potential
is be assigned the index n. Thus no encoding of the permuta-
tion is needed. By using a fixed quantized potential defined as

V = diag(1,...,n), (41)
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1, 7/_»{/ Vi

i /7
Id /
fl N

) )

Vv LBO

Fig. 7. Potential function defined on the original mesh (left), reconstruc-
tion of the mesh coordinates with 50 eigenvectors using the LBO (mid-
dle) and the Hamiltonian constructed with the proposed method (right).
Blue and red colors represent negative and positive values respectively.
The Hamiltonian is able to focus on sharp regions of the mesh desig-
nated by the blue regions of the potential for a better reconstruction (fin-
gers). The errors are 0.0015 and 0.00061 for the LBO and the
Hamiltonian respectively.

Hamiltonian

the decoder simply applies L + «V 4+ B in order to obtain the
Hamiltonian basis. Here o and g are the regression coeffi-
cients minimizing ||V + 8 — V|| that are also encoded. To
keep the eigendecomposition feasible, we decompose the
shape into segments as proposed in [7]. Thus the computa-
tion time scales linearly with the number of fixed sized seg-
mented parts. We present spectral compression performance
compared to the LBO in Fig. 8.

4 COMPRESSED MANIFOLD MODES

[26] proposed a a novel method to create a set of localized
eigenfunctions in euclidean domains. To that end, they
modified the construction of standard differential operators
by adding an L, regularization term to the variational lead-
ing to the decomposition of the operator. The resulting
eigenfunctions were called compressed modes and were
shown to be compactly supported [39] . [20] extended this
construction to manifolds, suggesting the following discrete
L regularization problem

min  trace(® W) + u||®||,
@ (42)
s.t. OTAD =1.

with the parameter p that controls the localization of the
basis. Proposed solutions require the use of expensive opti-
mization techniques [40] based on ADMM and proximal
operators, also unstable over nearly isometric shapes [20].

The latter optimization problem (42) can be written as an
Hamiltonian eigendecomposition problem [21]

min  trace(®TW®) 4 u trace(®T AV,d)
® (43)

st OTAD =1,

where V] is the diagonal matrix operator defining the poten-
tial that corresponds to the ith eigenvector that localizes the
support of ¢; in low-potential areas. Thus, every eigenvector
has a different potential defining it.The potential is defined
iteratively using a re-weighted least squares scheme

1
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Fig. 8. Geometry compression performance comparison between the
Laplacian (MHB), the proposed projected operator (H), and the optimal
Hamiltonian (H opt) using the proposed framework for the Fandisk (6475
vertices), and Centaur (15768 vertices) models. The optimal Hamiltonian
performance are presented without encoding of the potential itself.

ensuring that the minimizers of (42) and (43) coincide. Inter-
estingly, the potential here is defined as a function of the
eigenfunction, namely V; = V;(¢;). The potential and the
resulting eigenstate are then intrinsically linked, meaning
that the potential is influenced by the state of the particle
itself. Consequently, a perturbation of the potential enforces
perturbation of the eigenfunction and vice versa until reach-
ing steady state.

Note that since we are interested in a ¢; vanishing every-
where except some local support, the potential will grow to
infinity at many points on the manifold. This phenomenon
can be countered by adding a small regularization constant
to the denominator (which is equivalent to smoothing of the
Ly norm) or capping the values of V;. While such a growth
increases the condition number of the Hamiltonian, the
lower part of the spectrum, in which we are generally inter-
ested, remains unaffected. The operator is never inverted,
hence, the growth of V; does not introduce numerical
instabilities. Fig. 9 shows the iterative refinement of the
eigenfunction.

We formulate the compressed manifold modes problem
as

néi_n ¢ Hig; + ﬂz ||¢]TA¢1||§

with H; = W + AV, and where B is a sufficiently large con-
stant such that the third term guarantees that the ith mode
¢; is A-orthogonal to the previously computed modes ¢,
J < i. Here, orthogonality is only required for the first few
eigenvectors, which are unaffected even by very large val-
ues of the potential. Observe that albeit non-convex, the
problem has a closed form global solution, that is the small-
est generalized eigenvector ¢, of

Authorized licensed use limited to: DA IICT. Downloaded on June 02,2023 at 03:37:32 UTC from IEEE Xplore. Restrictions apply.



1328

/ /
( (

\ \

) )

Tteration 15 Tteration 20

Tteration 10

Tteration 1

Fig. 9. First eigenfunction of the Hand model obtained iteratively with the
proposed IRLS framework.

(Hi + Zi)p; = NiAg; (46)

with

Z; =U,U! = pA (Z ¢‘,¢;.f) A

j<i

For small number of compressed modes, Z; is a low rank
matrix and finding the smallest generalized eigenvector can
be solved efficiently since the involved matrix is the sum of
a sparse and a low-rank matrix.

Several numerical eigendecomposition implementations
use the Arnoldi iteration algorithm. In our matrix decompo-
sition problem, the core operation is the multiplication by
the inverse of the matrix with a vector, operation that cannot
be solved straightforwardly. Also, shifting the matrix with
maximum eigenvalue in order to get the required minimum
eigenvalue using the power method is too unstable since it
depends on the gap of the first eigenvalues, which is gener-
ally tight. In our configuration the Woodbury identity [41]

(Hi+UUN ' =H' - H'U,(I+ UTH;'U,) 'UT H Y,

can be used to compute efficiently the vector multiplication
with the inverse of the matrix as a cascade of sparse and
low-rank systems as follows:

Unlike solutions of the inconsistently discretized problem
(42), the basis obtained with the proposed Hamiltonian
framework is more robust under various discretizations
(order and localization of the eigenfunctions) and can be
computed at a fraction of the computational cost as pre-
sented in Fig. 10 where the discrete Laplacian has been
simulated as suggested in [40].

Algorithm 1. Computation of (H; + Z;)y =«

1: Solve the sparse system H;y, = x

2: Compute the low rank multiplication
yr = Us((I +UTH'U) ™ (UTy))

3: Solve the sparse system H;y; = 32

dy=uy—-ys

Lasso minimization of an aggregation of the L, and L,
norms is a convex problem (typically, even a strictly convex
one) which due to its lack of smoothness is usually solved
using proximal descent methods. Our setting is different, as
we have a non-convex problem due to the orthogonality con-
straints. Our initial setting for the potential is always V; = A
where A is the mass matrix, which yields efficient conver-
gence and meaningful localized modes. The framework is pre-
sented in Algorithm 2. Recently, [42] assessed the efficiency of
the suggested method compared to the ADMM approach.
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Fig. 10. Runtimes of Neumann et al. and the proposed framework on
meshes of varying size (number of vertices n) and number of eigenvec-
tors k. Averages and standard deviations are presented over 10 runs.
Same stopping criteria were applied to all methods.

Algorithm 2. IRLS CMM

Input: k£, W, A

Output: {d)i}fic:l

1: U(J — @

2: fori=1...kdo

3: V<A

4:  while convergence rate > ¢, do

5: Obtain ¢; from eq. (46) using Alg. 0
6

7

V — diag(2 /e + ¢?)71

Ui [Uj—1, BAD;]

5 SHAPE MATCHING

The task of matching pairs of shapes lies at the core of many
shape analysis tasks and plays a central role in operations
such as 3D alignment and shape reconstruction. While rigid
shape matching has been well studied in the literature, non-
rigid correspondence remains a difficult task even for nearly
isometric surfaces. When dealing with rigid objects, it is suf-
ficient to find the rotation and translation that aligns one
shape to the other [43]. Therefore, the rigid matching prob-
lem amounts to determining only six degrees of freedom.
At the other end, non-rigid matching generally requires
dealing with many more degrees of freedom. Since the LBO
is invariant to isometric deformations, it has been used
extensively to aid the solution of correspondence problem.
Several properties of the Hamiltonian operator make it a
better choice for this task compared to its zero-potential par-
ticular case that is the LBO.

Invariance.The Laplace-Beltrami Operator is defined in
terms of the metric tensor which is invariant to isometries.
For a potential function defined intrinsically, the resulting
Hamiltonian is also isometry-invariant.

Compactness.Compactness means that scalar functions on
a shape should be well approximated by using only a small
number of basis elements. From Theorem 2 and as a gener-
alization of the Laplacian, the global support and compact-
ness hold for a bounded (low) potential.

Descriptiveness. The LBO eigenvalues are related to fre-

uency. Similarly, eigenenergies of the Hamiltonian relate
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A %

(a) Nearly isometric shapes

(c) Hamiltdhian

C ®LBO

Fig. 11. Two nearly isometric meshes with high potential (hot colors) in
large distortion regions (a), functional maps matrix C' of the LBO (b) and
the Hamiltonian (c).

to the number of oscillations on the manifold. Theorem 1
demonstrates that the modes corresponding to small eigen-
values of the Hamiltonian defined with a positive potential,
encapsulate higher frequencies, even when localized, com-
pared to the modes of the regular LBO. At the other end,
highly oscillating eigenfunctions can be used to represent
fine details of the shape that can be crucial for shape match-
ing. Also, the potential enforces different oscillations in
different regions on the manifold, allowing for better dis-
crimination of similar areas and disambiguation of intrinsic
symmetries with asymmetric potential.

Stability. Deformations of non-rigid shapes and articu-
lated objects can stretch the surface. In such cases, the LBO
eigendecomposition of the two shapes will be different. We
could compensate for such local metric distortions by care-
fully designing a potential. Assigning high potential to
strongly distorted regions would lead to lower values of the
eigenfunctions in those areas (9). Such a potential will
reduce the discrepancy between corresponding eigenfunc-
tions at least for the lower eigenergies, as shown via the
functional maps representations [13] in Fig. 11. In order to
simulate such a potential, let us define A,;(m;) and An(n;),
the area at vertex m; on mesh M and n; on the second mesh
N respectively and 7 : M — N a bijection between two (dis-
cretized) surfaces M and N. Then, we define the potential V'
at vertex m; = t~!(n;) as

) = max Apr(mi)  An(n;)

(47

Among the few stable intrinsic invariants that can be
extracted from the geometry, we will use the stable first
eigenfunctions of the LBO and geodesic distances. Addi-
tional non necessarily intrinsic information such as photo-
metric properties or even extrinsic shape properties such as
principal curvatures [24] can also be integrated into the
potential field.

5.1 Experimental Evaluation

We tested the proposed basis and compared its matching
performances to that the LBO basis as applied to pairs of
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Fig. 12. Evaluation of the diffusion kernels signatures matches on the
TOSCA and SCAPE datasets.

triangulated meshes of shapes from the TOSCA dataset [44]
and the SCAPE dataset [45]. The TOSCA data set contains
densely sampled synthetic human and animal surfaces,
divided into several classes with given ground-truth point-
to-point correspondences between the shapes within each
class. The SCAPE data set contains scans of real human bod-
ies in different poses. The evaluation method used is
described in [46] where the distortion curves describe the
percentage of surface points falling within a relative geode-
sic distance from what is assumed to be their true locations.
Symmetries were not allowed in all evaluations. Note that
we assume that the sign ambiguity of the first eigenfunc-
tions generating the potential is resolved [47].

Fig. 12 compares the two operators by matching diffu-
sion kernel descriptors derived from the corresponding
eigenfunctions. The diffusion on the shape using the Hamil-
tonian as the diffusion operator is more descriptive than
regular diffusion that cannot resolve the symmetries. Also,
it would be natural to compute the WKS signature when the
Schrodinger equation is governed by a given effective
potential. As intrinsic positive potential we use the normal-
ized sum of the four first nontrivial eigenfunctions of the
LBO on each shape, adding a constant of minimal value in
order to obtain a non-negative potential. This way only the
intrinsic unstable geometry of the shape is involved in
defining the Hamiltonian operator.

In case we know which regions are prone to elastic dis-
tortions, like joints and stretchable skin in articulated
objects, we could suppress the effect of those regions in our
matching procedures by using an appropriate potential as a
selective mask. Fig. 13, compares the operator with and
without potential by matching the spectral signatures com-
puted by the framework of [48]. The potential we used is
the local area distortion when comparing the meshes of two
corresponding objects, as in (47). The descriptiveness of the
potential and the localization of the harmonics lead to more
accurate matching results.

% Correspondences
e s w8 s

o o
Geodesic Error

(b) SCAPE

o o
Geodesic Error

(a) TOSCA

Fig. 13. Evaluation of the spectral signature matches on the TOSCA and
SCAPE data-sets.
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Fig. 14. Evaluation of the descriptors matches on the "Dogs” benchmark
from the TOSCA dataset with dalmatian texture.
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Fig. 15. Evaluation of the ICSKM algorithm with different landmark ini-
tialization matches on the TOSCA dataset. We used geodesic distances
from given landmark points as intrinsic geometric potential on the
shapes.

To investigate the performances of the Hamiltonian with
photometric textures used as potential, we present in Fig. 14
the results of different signatures matching with a dalma-
tian texture defined for the "Dogs” shapes from the TOSCA
data set.

Iterative refinement of functional representations have
been proven to be powerful in shape matching [13]. Given
an initial partial or dense map, it tries to recover iteratively
dense and accurate matching between two given shapes.
Here we use a similar refinement framework dubbed as
Iterative Closest Spectral Kernel Maps (ICSKM) [15] for per-
formance comparison between the two bases. Fig. 15 com-
pares the regular ICSKM algorithm working with the
Laplacian eigenspace and the Hamiltonian method when
we provided one, two, or three landmark points, that were
randomly selected from the ground-truth mapping. The
potential used in these examples is the geodesic distance
from the landmark points. This approach has been extended
to partial shape matching by [25], where Gaussian around
anchor points is used for better matching. Note that again
we use only the geometry of the shapes in order to refine
the match between them using the new basis.

6 CONCLUSION

A classical operator was adopted from the field of quantum
mechanics and adapted to shape analysis problems. Func-
tional and spectral properties of the Hamiltonian operator
were presented and compared to the popular Laplacian
often used in many shape analysis procedures. General
optimization methods for solving variational problems
involving the Hamiltonian operator have been proposed
and employed to the task of mesh compression and
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computation of compressed manifold modes. Features and
texture properties can be incorporated into the new opera-
tor to obtain a descriptive and stable basis that provides a
powerful domain of operation for shape matching. Various
directions for future research include exploration of the
operator on other shape analysis tasks such as partial shape
matching where occluded areas could be refined via the
potential.
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