
GRACE: A Scalable Graph-Based Approach to Accelerating
Recommendation Model Inference

Haojie Ye

University of Michigan

Ann Arbor, Michigan, USA

yehaojie@umich.edu

Sanketh Vedula

Technion

Haifa, Israel

sanketh@campus.technion.ac.il

Yuhan Chen

University of Michigan

Ann Arbor, Michigan, USA

chenyh@umich.edu

Yichen Yang

University of Michigan

Ann Arbor, Michigan, USA

yangych@umich.edu

Alex Bronstein

Technion

Haifa, Israel

bron@cs.technion.ac.il

Ronald Dreslinski

University of Michigan

Ann Arbor, Michigan, USA

rdreslin@umich.edu

Trevor Mudge

University of Michigan

Ann Arbor, Michigan, USA

tnm@umich.edu

Nishil Talati

University of Michigan

Ann Arbor, Michigan, USA

talatin@umich.edu

ABSTRACT
The high memory bandwidth demand of sparse embedding layers

continues to be a critical challenge in scaling the performance of

recommendation models. While prior works have exploited het-

erogeneous memory system designs and partial embedding sum

memoization techniques, they offer limited benefits. This is because

prior designs either target a very small subset of embeddings to

simplify their analysis or incur a high processing cost to account for

all embeddings, which does not scale with the large sizes of modern

embedding tables. This paper proposes GRACE—a lightweight and
scalable graph-based algorithm-system co-design framework to

significantly improve the embedding layer performance of recom-

mendation models. GRACE proposes a novel Item Co-occurrence

Graph (ICG) that scalably records item co-occurrences. GRACE
then presents a new system-aware ICG clustering algorithm to find

frequently accessed item combinations of arbitrary lengths to com-

pute and memoize their partial sums. High-frequency partial sums

are stored in a software-managed cache space to reduce memory

traffic and improve the throughput of computing sparse features.

We further present a cache data layout and low-cost address compu-

tation logic to efficiently lookup item embeddings and their partial

sums. Our evaluation shows that GRACE significantly outperforms

the state-of-the-art techniques SPACE and MERCI by 1.5× and 1.4×,
respectively.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00

https://doi.org/10.1145/3582016.3582029

KEYWORDS
DLRM, Embedding Reduction, Algorithm-System Co-Design

ACM Reference Format:
Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang, Alex Bronstein,

Ronald Dreslinski, TrevorMudge, and Nishil Talati. 2023. GRACE: A Scalable

Graph-Based Approach to Accelerating Recommendation Model Inference.

In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY,

USA, 20 pages. https://doi.org/10.1145/3582016.3582029

1 INTRODUCTION
Deep Learning Recommendation Models (DLRMs) are widely em-

ployed to predict rankings of news feeds and entertainment con-

tent [18, 21]. An earlier work [26] shows that DLRMs consume ama-

jority of AI inference cycles of data centers. DLRM exhibits a mix of

workload characteristics with fully connected dense neural network
layers and sparse embedding layers. The sparse embedding layers

are the primary performance bottlenecks of DLRM execution due to

their highmemory bandwidth requirement [24, 26, 28, 34, 38, 43, 44].

Because this application runs at a population scale, the execution

bottlenecks significantly increase the Total Cost of Ownership

(TCO) and power consumption of data centers [5, 35]. Therefore,

improving DLRM performance directly results in saving millions

of dollars in cost and carbon emission [66].

The key challenge in accelerating the DLRM embedding layer

performance is to exploit spatial and temporal locality. This chal-

lenge is because of the irregular nature of the workload’s memory

access pattern over large embedding tables. Recently, several tech-

niques have attempted to improve the DLRM embedding layer

inference performance either by caching partial sums of embed-

dings leading to reduced memory traffic [34, 48] or by exploiting

the heterogeneous memory systems [1, 34, 38]. These approaches,

however, fall short in the following manner. First, FAE [1] and Rec-

NMP [38] employ heterogeneous memory systems to exploit the

power-law in the item access frequency distribution; however, they

do not improve the memory traffic. Second, SPACE [34] employs

282

https://doi.org/10.1145/3582016.3582029
https://doi.org/10.1145/3582016.3582029
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582029&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

a heuristic threshold to select a small subset of popular items and

stores exhaustive combinations of two-item partial sums that leads

to low memory bandwidth reduction. Third, MERCI [48] employs

an expensive user trace processing technique to store partial sums

of more than two items. It has three main drawbacks: (i) the algo-

rithm does not scale to large embedding tables, (ii) the algorithm

operates on the level of sub-groups of embeddings and it does not

capture a global view of user-item interactions; thus the resulting

partial sum formation is based on a limited scope of user-item in-

teractions, leading to sub-optimal memory traffic reduction, and

(iii) its design is unaware of memory heterogeneity. An ideal de-

sign goal is to significantly reduce memory traffic while exploiting
memory heterogeneity in a scalable fashion.

This paper presents GRACE—a scalable graph-based algorithm-

system co-design that significantly improves the memory system

performance of DLRM embedding reduction on commodity hard-

ware. Due to the software-only nature of its design, GRACE can be

immediately deployable in today’s data centers. The design goals

of GRACE are four-fold: (1) exploit spatial and temporal locality in

the workload, (2) significant memory traffic reduction, (3) memory

heterogeneity awareness, and (4) scalability to large embedding

table sizes. To this end, we cast the problem of scalably identifying

popular item combinations of arbitrary lengths to a graph problem.

Using the outcome of this problem, we present a generic system

design framework to improve DLRM performance.

Specifically, GRACE analyzes the item preferences of different

users to construct an Item Co-occurrence Graph (ICG). Nodes in

this graph represent items, and edge weights represent the num-

ber of times two items are co-accessed. Mapping co-occurrence

frequencies to a graph offers a global view of co-occurrence events

that can scale to a large number of users/items. We then propose a

novel clustering algorithm for ICG that finds frequently accessed

item combinations. Each resulting cluster is a set of co-accessed

items. To best exploit this algorithmic framework, GRACE stores

the partial sums of frequently co-accessed item combinations into

a software-managed cache space. The ICG clustering algorithm

is cache layout aware. GRACE effectively navigates the trade-off

between memory traffic reduction and heterogeneous memory

bandwidth utilization by appropriately distributing partial sums

and single-item embeddings into cached and non-cached spaces.

ICG construction and clustering, and partial sum cache data in-

jection are performed offline without affecting ongoing inference

cycles. At runtime, GRACE exploits both cached partial sums and

frequently accessed single-item embeddings to significantly reduce

the memory traffic and improve spatial and temporal locality.

To showcase the effectiveness of GRACE, we use a case study
of a heterogeneous CPU-GPU system, widely deployed in today’s

data centers [25, 45, 63, 76] for executing DLRMs. In this system,

the capacity-limited GPU memory acts as a software-managed

cache. Our evaluation
1
shows that GRACE outperforms the state-

of-the-art techniques SPACE [34] and MERCI [48] by 1.5× and 1.4×,
respectively. We further show that GRACE reduces the memory

traffic of embedding reduction by 1.5× and 1.1× over SPACE and

MERCI. GRACE also improves performance over prior works by

1
We use an in-house implementation for SPACE [34], and open-source implementa-

tion [3] of MERCI [48] by the authors.

balancing the traffic between the heterogeneous memory system.

The graph clustering algorithm in GRACE scales well with the in-

crease in the number of user/items, reducing the processing cost by

8.3× compared to MERCI. The scalable nature of GRACE enables

analysis of large user-item interaction traces and embedding tables

in a practical fashion. We demonstrate the generality of GRACE
by presenting case studies of two additional hardware platforms: 1)

a homogeneous GPU memory and 2) a DIMM-HBM heterogeneous

memory with Processing-In-Memory (PIM) capability. These stud-

ies show consistent improvements of GRACE over prior systems.

Compared to the state-of-the-art system MERCI, GRACE makes

the following novel contributions. First, GRACE fundamentally

redesigns the problem of finding frequently accessed item com-

binations by formulating it as a graph problem. This formulation

provides a global view of the user-item access trace, as opposed

to MERCI, which operates with a limited scope of user-item inter-

actions. Second, GRACE proposes a scalable clustering algorithm

whose complexity grows linearly with the number of items and

is independent of the number of users. To compare, the runtime

complexity of MERCI is quadratic in the number of items and in-

creases linearly with the number of users. Third, GRACE design

is memory heterogeneity-aware, which caters to the data center

systemmodeling of the DLRMworkload deployment [24, 63], while

MERCI is designed only for homogeneous memory systems.

To summarize, the key contributions of GRACE are as follows:

• Casting the problem of finding popular item combinations

in DLRM to a graph problem.

• Introduction of novel Item Co-occurrence Graph (ICG) that

scalably records co-accessed item combinations for DLRM.

• A system-aware and scalable graph clustering algorithm

aimed at finding arbitrary-length popular item combinations

within the capacity-limited cache space.

• GRACE—an algorithm-system co-design that reduces mem-

ory traffic and exploits heterogeneous memory system to

improve end-to-end DLRM throughput by 1.40× and 1.35×
compared to the state-of-the-art frameworks SPACE [34]

and MERCI [48], respectively.

• GRACE is open-source for the benefit of the broader research

community: https://github.com/Linestro/GRACE.

2 BACKGROUND
2.1 Personalized Recommendation Models
The goal of DLRM is to predict the Click-Through Rate (CTR) [13,

18, 54, 72, 78], i.e., the probability of a user clicking on an advertised

item. A major data center operator Meta (previously Facebook) has

claimed [26] that DLRM models consume more than 60% of their

AI inference cycles in production, which makes them a leading

candidate for optimization. In contrast to traditional deep neural

network (DNN) models, DLRM features a hybrid architecture of

multi-layer perceptron (MLP) models and embedding layers. The

“dense” input features (e.g., age, gender, and location of the user)

are processed by the first MLP to generate dense features. The

sparse input features (e.g., previous user-item interactions), on the

other hand, are processed by the embedding layers. An embedding

layer contains a large embedding table that stores feature vectors

of different items. A user’s past interactions with items are used

283

https://github.com/Linestro/GRACE

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

NoCPU GPU0 GPUN-1

CPU
Memory GPU Memory

(a)

Sparse Features Dense Features

In GPU
Memory

Yes

TX Indices
to GPU

Read Emb

Reduce

Read Emb

Reduce

TX Features to GPU

Bottom MLP

TX Results to
GPU

Top MLP

+
Reduce

Concat

||(b)

Hot Embeddings
Bottom + Top MLP

Cold
Embeddings

Figure 1: (a) A heterogeneous CPU-GPU system executing
DLRM inference, and (b) workflow of DLRM inference exe-
cution with a heterogeneous system.

to index these tables to extract items’ features. These features are

then reduced to represent the summary of the user’s interests. This

layer performs sparse computation because a user only interacts

with a handful of items out of millions of available items. These

sparse and dense features are thereafter concatenated and fed into

another MLP layer to predict the CTR.

2.2 DLRM Inference with GPU Support
DLRM systems in production [25, 45, 63, 76] employ a hybrid CPU-

GPU design to execute MLPs and memory-bandwidth–demanding

embedding layers in DLRM models. A simplified depiction of exe-

cuting DLRM models on a hybrid CPU-GPU system is presented in

Fig. 1(a). GPU executes MLPs to exploit higher compute throughput.

The high-bandwidth GPU memory is used to handle the memory

bandwidth-intensive reduction operations of the embedding lay-

ers. However, the embedding tables that store all item features can

amount from tens of GBs to TBs, making it impossible to fit the

entire table into GPU memory. Thus, the GPU memory acts as a

software-managed cache space to store a portion of the embedding

tables [1, 25, 34, 45, 63]. Low-bandwidth CPU memory with high

capacity is employed to store and reduce the rest of the embedding

entries that do not fit in the GPU. We further show in Fig. 1(b) the

state-of-the-art DLRM inference framework that incorporates a

GPU. After receiving a batch of user requests, the requested em-

bedding indices are transferred (TX) to the GPU and are evaluated

for whether each of them is on CPU or GPU. The embedding reduc-

tion operations will distribute to the corresponding memory and

CPU/GPU reduces the embeddings to produce the results for each

user before the results are finalized on GPU for top MLP layers.

2.3 Exploiting Popular Choices in DLRMs
Real-world DLRM inputs follow a power-law distribution [1, 22, 48,

58, 68], where a small collection of popular items accounts for a

large fraction of embedding table accesses. Below, we summarize

prior works that exploit power-law distribution for optimization.

• FAE [1] proposes a framework that constructs an empirical

distribution of item access frequencies by profiling a portion

of the user-item access trace. The framework then calibrates

a popularity threshold and uses the GPU memory to store

the highly accessed embeddings.

• RecNMP [38] proposes a small cache structure to each rank-

level near-memory processing module to bypass the DRAM

loads of frequently accessed items.

• SPACE [34] employs a hybrid memory architecture with

HBM and DIMM, where HBM stores popular user choices.

SPACE introduces two new concepts called gather locality

Memory Traffic Reduction (x)

He
te

ro
ge

ne
ou

s
M

em
or

y
Aw

ar
e

1 2

Goal

MERCI

SPACEYes

No

FAE,
RecNMP

(a) (b)

0

0.5

1

1.5

2

2.5

Inf HBM SPACE MERCI ORACLE-OF-2

Pe
rfo

rm
an

ce

Approach

Figure 2: The landscape of DLRM embedding layer optimiza-
tion design space and their respective performance over an
infinite GPU memory model.

and reduction locality. The power-law nature of the item

access frequencies implies that preferential treatment of pop-

ular items (i.e., placing them in HBM) can promote gather

locality. Reduction locality, on the other hand, is availed by

storing partial reductions of any two popular item vectors.

Specifically, SPACE uses psum2, i.e., reduction of embedding

vectors of pairs of popular items. To exploit these two types

of locality, SPACE pre-processes the user-item access trace to

extract popular item choices and their combinations. These

popular embedding vectors are stored in capacity-limited

HBM that enables high-bandwidth access, while other em-

bedding vectors are extracted from DIMMs.

• MERCI [48] generalizes SPACE by storing partial sums of

more than two items. MERCI inspects the user-item interac-

tion trace, analyzes popular co-accessed items, and merges

them into clusters. Within the cluster, all partial sums are

stored using the additional DRAM storage.

3 UNDERSTANDING THE CHALLENGES IN
ACCELERATING DLRM INFERENCE

3.1 Growing Data Sizes and Demands
The recent development of DLRM observes a super-linear growth

of capacity and bandwidth demands. The evolution in DLRM has

resulted in much richer embedding features, leading to increased

data volumes. The memory footprint of DLRM has increased by 16

times, reaching an order of terabytes within four years [52, 77]. Ad-

ditionally, the inherently irregular nature of memory accesses over

large embedding tables results in a significant portion of accesses

that cannot be served using capacity-limited caches, increasing the

off-chip memory bandwidth requirements. The bandwidth demand

of DLRM embedding layers has increased by 30 times to 2TB/s, dra-

matically outpacing the bandwidth growth of accelerator memories

and interconnections [63].

3.2 Limitations of Prior Works
Fig. 2(a) shows the landscape of optimization directions divided

into memory traffic reduction and heterogeneous memory aware

placement for better memory bandwidth utilization. The goal is

to achieve both high memory traffic reduction and high memory

bandwidth utilization of the heterogeneous memory at the same

time. However, we show in the following that none of the prior

works supports designs in both optimization directions, and thus,

results in sub-optimal performance.

Memory traffic reduction. In what follows, we discuss prior

works that attempt to improve the DLRM embedding layer per-

formance. As many items are frequently accessed together, these

works propose storing their partial sums, resulting in a memory

traffic reduction. SPACE [34] uses a subset of the most popular

284

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

items and caches partial sums (psum) all two–item combinations of

popular items to produce reduction locality. This reduces the mem-

ory bandwidth requirement. However, we show that SPACE only

reduces the memory traffic by 1.09× on average (detailed in Fig. 10).

While the most popular single items are likely to be accessed by

different users, there is no guarantee of users accessing all possi-
ble two popular item combinations frequently. We find that only

an average of 25% of popular psum of two items stored in SPACE

represent 95% of the accesses to the cache space. This shows that a

majority of cached partial sums in SPACE are accessed significantly

less frequently. This caching space can be better utilized by stor-

ing other more frequent patterns. Also, SPACE only tracks psums
among O

(√
𝑛
)
frequently accessed items, where n is the number

of items, making the strategy unscalable to large datasets.

MERCI [48] finds that items that co-occur can benefit from memo-

ization of their partial sums. Such memoization can be generalized

to clustering the co-occurred items and storing all psums within
each cluster. MERCI proposes generating the most cost-efficient

item clusters to fill the cache space. However, the main drawback

is the complexity of generating such clusters. MERCI first classifies

each item as a single-item cluster and recursively measures the

benefit of merging any two clusters. By merging two clusters, all

the partial sums within the clustered items are stored to reduce the

memory bandwidth requirement. The amount of bandwidth reduc-

tion is measured by inspecting the inverse map of the full training
trace. The clustering incurs an overhead of O

(
𝐶 × 𝑛2 ×𝑚

)
, where

C is the maximum capacity of generating psums, n is the number of

items andm is the number of users in the training trace. In practice,

MERCI breaks the total item set into k sub-groups using an off-the-

shelf algorithm [8] and only merges within the sub-group. This

reduces the complexity to O
(
𝐶 × 𝑘 ×

(
𝑛
𝑘

)
2

×𝑚

)
. Nevertheless, the

complexity of MERCI grows super-linearly with the increase in the

number of items and number of users, making the algorithm not

scalable to large datasets.

Memory heterogeneity awareness. Both FAE [1] and Rec-
NMP [38] set a heuristic threshold to distribute popular items to

GPU/RankCache and exploit the high bandwidth memory of the

heterogeneous system. SPACE stores popular embeddings (and

psums) to produce gather locality.

To analyze the importance of memory heterogeneity awareness,

we measure the performance of executing DLRM on a host machine

that uses a heterogeneousmemory system (configuration detailed in

§6). For baseline performance analysis, we assume an infinite GPU

memory capacity and naively migrate all embeddings (no psums) to
the cache space, i.e., the GPU memory. We further tested an oracle-

of-2 framework that assumes psum of any 2 item embeddings

can be accessed, and memory throughput on the heterogeneous

memory system achieves a perfect balance between the CPU and

GPU memory. While an oracle-of-3 or more is possible, we choose

an oracle-of-2 to compare with MERCI and GRACE because it

provides a reasonable roofline for the reduction factor. Fig. 2(b)

shows that with the same additional capacity on GPU, two strategic

frameworks SPACE and MERCI only outperform the baseline by

1.14× and 1.20× on average, while oracle-of-2 outperforms the

baseline by 2.16×. We conclude 2 key reasons for this gap.

(a) Lowmemory traffic reduction ratio. The main speedup of

SPACE stems from setting a heuristic threshold and storing popular

item embeddings on HBM. This empirically distributes the traffic to

both CPU memory and GPU memory, achieving a higher collective

bandwidth. However, the traffic reduction ratio only goes up to

1.09× in SPACE due to the reduction strategy being unscalable to

large datasets. FAE and RecNMP fall into the same category with a

traffic reduction ratio of 1 (no reduction).

(b) Lack of heterogeneous memory awareness.MERCI finds

items clustering assignments that maximize the memory traffic

reduction using psums. However, this does not necessarily lead to

optimal performance. By caching psums to the capacity-limited

GPU, the bandwidth requirement is reduced, but this comes at the

cost of excessively populating the cache space with psums that are
rarely accessed. The occupied memory capacity for storing such

psums prevents adding single-item embeddings to the GPU. This

causes many item embeddings to be accessed from DIMM-based

low bandwidth memory, throttling the overall memory throughput

(detailed in §7.1). An ideal clustering algorithm should be memory
heterogeneity aware and balance the trade-off between memory traf-
fic reduction and the heterogeneous memory throughput to achieve
optimal performance.

3.3 Challenges in Scalable System Design
Today’s DLRM models involve several million items accessed by

tens of millions of users [52, 77]. Scalably identifying frequently

accessed item combinations that result in an effective memory

traffic reduction remains a major challenge. Additionally, prior

works do not systematically optimize for a collective bandwidth
reduction of the heterogeneous memory system, resulting in a

memory throughput imbalance.

4 GRACE ALGORITHMIC FRAMEWORK
This section presents a novel algorithmic framework of GRACE to

tackle the aforementioned challenges. The framework designs the

content of the capacity-limited cache space to maximize the DLRM

inference performance. The designed cache space can contain both

popular item embeddings and partial sums of item combinations of

arbitrary lengths. We then present complexity and runtime over-

head analysis to demonstrate the practicality of our algorithm.

4.1 Design Goals
The goal of the GRACE algorithmic framework is to make the most

efficient use of the cache space to store frequently accessed items

and their combinations, given the capacity limitation. In particular,

the algorithmic framework must meet the following expectations:

• No exhaustive caching. As discussed in §3, storing all pairs of

highly accessed items leads to an O
(
𝑛2

)
space complexity,

where n is the number of highly accessed cached items. In

this setting, it is not guaranteed for all of the two frequently

accessed items to be frequently co-accessed; caching partial
sums of rarely co-accessed items wastes cache space. Thus,

the algorithm must not exhaustively cache all the possible

partial sums of highly accessed items.

• Scalable with trace size. The algorithm to build the cache

space must have low complexity. In practice, the user-item

interaction trace size can grow infinitely, and the number

of users and items can scale to many millions. Therefore, a

285

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

high-complexity algorithm to find popular partial sums to

cache can lead to prohibitive analysis times.

• System awareness. The algorithm should account for different

dataset characteristics and underlying system configurations,

and be extensible to multiple embedding tables to achieve

optimal performance in realistic deployment environments.

4.2 Algorithm Details
Given the user-item interaction trace, the goal of the algorithm is

to find the most frequently accessed items and item combinations.

Naively counting frequencies of all item combinations results in

a combinatorial explosion, thus it is not feasible even for a small

number of item combinations. To tackle this problem, here we

introduce the notion of an Item Co-occurrence Graph (ICG). In an

ICG, the nodes represent items, and edge weights represent the

frequency of co-occurrence of items across the sampled user access

patterns. We cast the problem of scalably tracking frequencies

of arbitrary-sized item combinations as a graph problem on the

ICG. The user-item interaction trace can have different orders of

items being accessed (i.e., irregular accesses) by users, and the

trace size can grow infinitely. Key advantages of representing user-

item interaction trace via ICG are (i) the graph size is invariant
to the number of users, (ii) it is an order-agnostic representation
of user-item trace, (iii) the number of nodes in the graph grows

only linearly in the number of items. Heavily weighted edges in

the ICG efficiently capture highly co-accessed combinations of

items gathered from all user-item interactions. Thus, ICG provides

a succinct global view over the user-item interaction trace, and

allows for the design of efficient graph analysis algorithms that

scale to large numbers of users and items. In what follows, we

present a unified algorithmic framework that identifies frequently

accessed single items and their combinations using the ICG. This

is a two–phase algorithm: the first phase records user preferences

and constructs of the ICG, and the second phase clusters this graph

to find popular items and their combinations.

ICG Construction Phase.We are provided with sampled his-

torical data of items accessed by users. Each user has a list of ac-

cessed items organized in a data structure user_accesses. We

use these user-item accesses to construct the ICG which contains

the frequency of co-occurrence of items aggregated across users.

Alg. 4 (see Appendix §A.1) presents the pseudo-code of this graph

construction phase. To build the ICG, we first randomly sample

users. For each sampled user, we buffer all pairs of items accessed

by the user as item co-occurrences. We then use this item co-

occurrence buffer to construct a weighted graph by increasing the

edge-weight by 1 for each co-occurrence. The buffer of edges/item

co-occurrences can be constructed online by a fire-and-forget pro-

cess without impacting the performance of ongoing DLRM infer-

ence; the weighted ICG is constructed offline during the cache

design phase. Further discussion on our proposed usage model is

presented in the sequel (§5.1).

ICG Clustering Phase. This phase clusters the ICG. The goal of
this algorithm is to identify frequently occurring item combinations

from the user access patterns. Post clustering, the nodes (items)

from the same cluster are deemed to be accessed together frequently.

One way to cluster the graphs is by employing off-the-shelf graph

clustering algorithms such as Metis [46]. Notably, these clustering

Algorithm 1 Pseudocode for partitioning ICG into clusters

1: procedure ClusterICG() ⊲ Offline ICG clustering

2: Input: G: Item Co-occurrence Graph (ICG)

3: Input: nodes: Vertex set of G sorted by their degrees

4: Input: capacity_budget: Number of cache lines allowed in cache space

5: Output: cluster_list: Assignment of ICG nodes into different clusters

6:

7: node_idx=0; cluster_id=0; occupied_space=|nodes|
8: active_list[u]=0, ∀ u ∈ nodes ⊲ indicator whether a node is clustered
9: while node_idx < |nodes| do
10: anchor_node = nodes[node_idx]
11: remaining_memory = capacity_budget - occupied_space
12: // Create a cluster using an anchor node
13: cluster = FormCluster(G, anchor_node, active_list,
14: remaining_memory)
15: // Calculate occupied space, break if OOM
16: occupied_space += 2cluster.size() - 1 - cluster.size()
17: if occupied_space >= capacity_budget then
18: break
19: cluster_list[cluster_id] = cluster
20: cluster_id += 1
21: while !active_list[nodes[node_idx]] do
22: node_idx += 1 ⊲ increment until reaching the first active node

23: return cluster_list

algorithms optimize for different criteria and do not create clusters

that minimize DLRM bandwidth as we show in §7.

GRACE proposes a novel clustering algorithm that clusters the
graph with the objective of maximizing bandwidth reduction in DLRM.

Our proposed algorithm is caching space-aware, i.e., it also accounts
for capacity-limited cache space for clustering decisions. Post clus-

tering, GRACE caches the partial sums of embeddings of all item

combinations within each cluster. During inference, these cached

partial sums are used to (i) reduce memory traffic, and (ii) avail effi-

cient memory accesses to increase end-to-end DLRM throughput.

Alg. 1 presents the pseudocode of the proposed ICG clustering

phase. The proposed algorithm uses a greedy approach to form

the clusters. The inputs to the clustering algorithm are: (i) the ICG

generated in the ICG Construction Phase; (ii) a sorted vertex list,

where nodes are sorted by their degrees in ICG; (iii) a capacity

budget, denoting the number of lines of item embeddings/psums
allowed in the cache space. We maintain an active list of vertices
that are not clustered and update this list as the algorithm pro-

gresses. The algorithm loops over all active vertices and attempts

to greedily form new clusters. Within each loop, the largest degree

vertex that is active is chosen as an anchor node and is passed to

FormCluster() to form a cluster of an arbitrary size. Upon forming

a cluster, occupied_space is updated. For each cluster, the algo-

rithm saves all combinations of its constituent items, taking an

additional size of 2
cluster_size − 1 − cluster_size compared to

originally stored item embeddings. The algorithm terminates when

the occupied_space reaches the capacity budget. We now detail

how to form clusters.

Forming a cluster. Alg. 2 presents the pseudocode for forming

individual clusters. The function receives four inputs: (a) the ICG,

(b) anchor_node—a starting node from which we attempt to form

a cluster, (c) active list of nodes that are not yet clustered; (d) re-

maining cache capacity. Given an anchor node, all its neighbors

that are part of the active list become the candidates to be added

to the cluster. We use a cost-benefit model to estimate the cost

efficiency obtained by including a new node in the cluster. To select

the best candidate to add to the existing cluster, we compute the

estimated benefit of each of the candidates to the cluster, and admit

the node that yields the maximum expected benefit. This algorithm

286

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Algorithm 2 Pseudocode for an algorithm to form a new cluster

under a capacity budget.

1: procedure FormCluster(g, anchor_node, active_list) ⊲ Offline

2: Input: G: Item co-occurrence graph (ICG)

3: Input: anchor_node: The node selected to create the cluster

4: Input: active_list: List of unclustered nodes

5: Input: remaining_capacity: Remaining memory within the cache space

6: Output: cluster: Formed cluster containing anchor_node
7: Constant: MAX_CLUSTER_SIZE: Maximum size of any cluster

8:

9: candidates = {anchor_node}
10: best_candidate = anchor_node
11: current_benefit = 0
12: while true do
13: cluster.append(best_candidate)
14: candidates.remove(best_candidate)
15: active_list.erase(best_candidate)
16: // Potential candidates while inducting the next node into cluster
17: candidates.add(active_list ∩ neigh(best_candidate))
18: best_candidate = -1
19: current_benefit *= tolerance_factor
20: if cluster.size() >= MAX_CLUSTER_SIZE then
21: break
22: if 2cluster.size()+1 − 1 >= remaining_memory then
23: break
24: for all candidate ∈ candidates do
25: // Estimate benefit of adding the candidate to the cluster
26: est_benefit = EstimateBenefit(G, cluster, candidate)
27: if est_benefit > current_benefit then
28: current_benefit = est_benefit
29: best_candidate = candidate
30: if best_candidate < 0 then
31: return cluster
32: return cluster

is greedy because it chooses the next best node from the candidate

set to insert into the clusters. When a new node is admitted to

the cluster, it is removed from the candidate set and the active list.

For the next iteration, the candidate set is updated to contain the

neighbors of all the nodes in the cluster so far that are in the active

list. In each round, after determining a new node to join the cluster,

we record the total estimated benefit so far. When new candidates

are evaluated, they are deemed valid to join the cluster if the cost

efficiency yielded by their addition to the cluster is greater than the

previous cost efficiency (within a specified tolerance level). This

procedure terminates when one of the following criteria is satisfied:

(i) no valid candidates are found to add to the cluster based on the

estimated benefits; (ii) the cluster size exceeds a maximum cluster

limit imposed externally; (iii) the cluster exceeds the total memory

budget in the cache space. Finally, the formed cluster is returned.

Cost-benefit model for joining a cluster. The goal of the cost-
benefit model is to estimate the benefit of admitting a candidate

node into a given cluster. Measuring the exact benefit of adding
a node to a cluster of items requires going over the entire trace

of user accesses to measure the frequency of all subsets of items.

The resulting complexity would be exponential with the size of the

cluster. Therefore, it is prohibitively expensive and unrealistic even

for small datasets. The key idea of our approach is to exploit the item

co-occurrence graphs to estimate the expected savings of a cluster

without explicitly counting the frequency of all combinations. Our

estimates rely on inclusion-exclusion rules in combinatorics [10].

This allows us to build lower and upper bounds on the frequency of

larger tuples (triplets, quadruplets, and beyond) by only measuring

the frequency of pairs (i.e. the number of co-occurrences). These

lower and upper bounds on frequencies directly allow us to estimate

the lower and upper bounds of the expected bandwidth reduction

resulting from caching all subsets of a given cluster.

a b

c

5

3 4 x

a

b

c

4-x5-x

3-x

Adding node c

= 2×𝑥 + 1× 5− 𝑥 + 1× 4− 𝑥
+	1× 3− 𝑥

= 12− 𝑥; 𝑥 ∈ 0,3

(a) (b) (c)

Saving

Min benefit: 9, max benefit: 12

Figure 3: An example demonstrating the cost-benefit model
of adding a node to an existing cluster.

We provide an intuitive explanation of our cost-benefit estima-

tion using an example. In Fig. 3, suppose we are provided with

a cluster that already contains items 𝑎 and 𝑏, and our goal is to

estimate the benefit of adding item 𝑐 to the cluster. As depicted in

Fig. 3(a), suppose items 𝑎 and 𝑏 are co-accessed 5 times, items 𝑏

and 𝑐 are co-accessed 4 times, and items 𝑎 and 𝑐 are co-accessed 3

times. However, note that the graph, since it encodes only pairwise

relations, does not offer any information on how often all three

items are accessed together. We can represent this information in

the form of a Venn diagram where (𝑎, 𝑏), (𝑏, 𝑐), and (𝑐, 𝑎) corre-
spond to different sets, as depicted in Fig. 3(b). We assume that

the intersection of three sets has 𝑥 elements. Storing the partial

sum of 𝑎, 𝑏 & 𝑐 , denoted by 𝑝𝑠𝑢𝑚(𝑎, 𝑏, 𝑐), reduces the number of

embedding fetches from 3 to 1 when all these items are accessed

together. Storing the partial sums of pairs, on the other hand, would

save one embedding fetch if the pair is co-accessed. Based on this

knowledge, we can calculate the total savings of caching all pairs

and the triplet as shown in Fig. 3(c) as a function of 𝑥 . Given the

number of co-accesses between (𝑎, 𝑏) = 5, (𝑏, 𝑐) = 4, and (𝑐, 𝑎) = 3,

the maximum frequency of (𝑎, 𝑏, 𝑐) could be 3 and the minimum

frequency of (𝑎, 𝑏, 𝑐) could be 0. Therefore, caching all combina-

tions of 𝑎, 𝑏, and 𝑐 yields worst-case and best-case savings of 9 and

12, respectively.

Forming a cluster with nodes 𝑎, 𝑏, and 𝑐 implies that we cache

these embeddings and their partial sums: emb(a), emb(b), emb(c),
and additionally psum(a, b), psum(b, c), psum(a, c), and psum(a, b,
c), i.e., 4 additional cached partial sums. Consequently, the cost-

benefit model estimates the maximum and minimum benefit of

adding a node 𝑐 to the cluster of nodes 𝑎 and 𝑏 would be 9/4

(min_expected_saving in Algorithm 3) and 12/4 (max_expected
_saving in Algorithm 3). In practice, we observe that the exact

benefit of adding a node to a cluster is around the midpoint of

the maximum and minimum estimated benefits. We use a linear

interpolation factor 𝛼 between the lower and upper bounds of the

benefit to estimate the cost efficiency of the proposed cluster as

shown in Algorithm 3. §B.4 discusses the sensitivity of tuning of this

estimation. GRACE uses a graph-based algorithm, which readily

applies to multiple embedding tables (shown in §A.3).

4.3 A Walk-Through Example
To best understand the proposed algorithms, Fig. 4 shows a walk-

through example of our ICG building and clustering phases. Fig. 4(a)

shows the user-item interaction trace, where 5 different users are

accessing unique items. In this example, we set the maximum cache

capacity to 10 cached items, tolerance factor to 0.4, and 𝛼 to 0.5.

Note that our algorithms are not restricted to these parameters and

can work for any parameter setting, these parameters are chosen

for simplicity.

Fig. 4(b) shows the ICG that is formed as a result of shown user

preference trace. In this example, the node IDs correspond to items

287

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 4 5 1

0 2

3

4 5

Res. Clusters

+

u0:0,1,2,3
u1:2,4,5
u2:0,2,3
u3:4,5
u4:2,3,4

User Preferences

0

2 3

1 4

5

3
2 2

2

2

11 1 1

1

Build Graph

2 33

0
2

4
2

1
21

2 33

2
0

3
5

2

2
1

2

3 0 4 5 1

2 33

0
22

4 524

5
24

4
3

1
1

2,0 =2/1
2,3 =3/1
2,4 =2/1
2,5 =1/1
2,1 = 1/1

Est.Benefit

2,3,0 =[5/4, 7/4]
2,3,1 =[4/4, 5/4]
2,3,4 =[5/4, 6/4]
2,3,5 =[4/4, 5/4]

Est.Benefit

Pick node 3

Est.Benefit=3
Est.Benefit=6/4
Tolerance>40%
prev Est.Benefit

Est.Benefit=0

Est.Benefit=0
Est.Benefit(4,5)=2/1

Est.Benefit=2

Te
rm

in
at

e
sp

ac
e

ex
ce

ed
ed 0

2
0+2
3
0+3
2+3
0+2+3
4
5
4+5

Cached Space

Active List

Cluster Node

Pick node 5

5
1 1

1

(a)

(b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k)

1
1

Te
rm

in
at

e
sp

ac
e

ex
ce

ed
ed3 0 4 5 1 0 4 5 1 4 5 1

Pick node 0

5 1 5 1 1

Figure 4: (a) User-item preference trace, (b) resulting ICG, (c-j) a walk-through example of the ICG clustering algorithm, and (k)
resulting clusters and cached embeddings.

Algorithm 3 Pseudocode to estimate the cost benefit of a node

joining an existing cluster

1: procedure EstimateBenefit(G, cluster, candidate) ⊲ Offline

2: Input: G: Item co-occurrence graph (ICG)

3: Input: cluster: the current formed cluster so far

4: Input: candidate: candidate node to join cluster
5: Output: est_benefit: estimated savings per cache line

6:

7: g = subgraph(G, cluster)
8: // Construct g’, the resulting cluster if candidate was added to g
9: g’ = g.add_node(G, candidate)
10: // Estimate cost benefit by the creation of g’
11: lower_bound = min_expected_saving(g’)
12: upper_bound = max_expected_saving(g’)
13: // g’ is the resulting cluster if candidate was added, thus |g’ | ≥ 2

14: est_benefit =
(1−𝛼)×lower_bound + 𝛼×upper_bound

2
(|g’|) −1−|g’|

15: return est_benefit

from 0 to 5. The edge weights of ICG represent the number of

times items corresponding to its source and destination nodes are

co-accessed. For example, items 2 and 3 are co-accessed by three

users, i.e., users 0, 2, and 4, hence, a weight of 3 is assigned to the

edge between ICG nodes 2 and 3. This graph is a result of the ICG

building phase, the next phase is clustering this graph.

The ICG clustering algorithm starts by assigning all nodes to the

active list, and picking the first node to start forming clusters. As

shown in Fig. 4(b), because node 2 has the highest degree (i.e., item
2 is the most popular), the first node that starts building clusters is

node 2 (Fig. 4(c)). Based on line 24 of Algorithm 2, all the neighbors

of node 2 from the active list are picked to estimate the benefit–per–

cached–space of adding them to an existing cluster. Based on the

ICG connectivity, node 3 has the best estimated benefit of 3/1 for

getting added to the cluster. Therefore, our algorithm picks node 3,

and forms a cluster of nodes 2 and 3. Note that this cluster takes 3

cache spaces, which is less than the cache budget of 10. Therefore,

this algorithm continues and it attempts to find new nodes to add

to the same cluster.

As shown in Fig. 4(f), the cluster expansion continues by examin-

ing the neighbors of ICG nodes 2 and 3 to the existing cluster. Using

nodes 0, 1, 4, and 5, the algorithm calculates the cost of adding

each of these nodes to an existing cluster of nodes 2 and 3. The

figure shows the range of benefits calculated by our algorithm, and

using an 𝛼 of 0.5, node 0 has the highest estimated benefit of 6 / 4

(the denominator of 4 is because the cluster of three nodes would

consume 4 additional caching locations). Because this benefit is

within a tolerance limit of the previously estimated benefit (i.e., 6
/ 4 > 0.4 × 3), node 0 is added to the cluster. At this point, 7 out

of 10 cache spaces are claimed, and adding any more nodes to the

cluster would result in more than 10 cache spaces. Therefore, this

clustering algorithm terminates, and it picks up a new node 4 from

the active list to form a fresh cluster. The result of this iteration of

clustering is a 2-node cluster with nodes 4 and 5.

Fig. 4(k) shows the result of this clustering algorithm, where

two clusters are formed with 2 and 3 nodes. It also shows the

consumption of cache space taken by these two clusters. Here, 0+ 2
means the partial sum of items 0 and 2. Of note are two important

details: (i) clusters can be of different sizes (size of 2 and 3 in

this example); (ii) the partial sums of all combinations of items

in a cluster are cached. The cache layout is carefully tailored to

compute addresses easily (detailed in §5.3). In practice, the cache

space budget is much higher, and this algorithm forms several

clusters of different sizes.

4.4 Overhead Analysis
Complexity Analysis. Denote the number of users by𝑚, and the

average length of item interactions per user by 𝑝 . The complexity of

ICG construction (Algorithm 4) is O
(
𝑚𝑝2

)
. Let 𝑛 be the number of

nodes (items) in ICG, 𝑑 be the average degree per node, and 𝑘 be the

average size of a cluster. The complexity of a single evaluation of

the cost model is O
(
𝑘2

)
. In Algorithm 2, the while(true) loop is

iterated 𝑘 times; each iteration makes 𝑑 calls to the EstimateBen-

efit() function (Algorithm 3). Therefore the overall complexity

of FormCluster() is O
(
𝑑𝑘3

)
, executed

𝑛
𝑘
times. Thus, the overall

complexity of clustering the ICG is O
(
𝑛𝑑𝑘2

)
.

We highlight the following merits of our algorithmic framework:

(i) the ICG construction phase is linear in the number of users;

(ii) the clustering algorithm is linear in the number of items. This

allows our approach to scale to a large number of users and items.

The ICG clustering complexity is quadratic to 𝑘 . Our evaluation

shows that 𝑘 goes up to 8 for the best DLRM performance, making

the clustering algorithm practical.

288

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stm ani movdblp off twi spo clo M1 M2 M3 M4
Workload

0

100

200

Cl
us

te
ri

ng
 T

im
e

(s
)

1532139724642329
GRACE Clustering MERCI Clustering

Figure 5: Clustering time comparison of GRACE and MERCI
using a 128-thread implementation among different datasets.

O
nl
in
e

O
ffl
in
e

User Preferences

Remapping Table
Data Center

0 2
0 3

6 9

Co-occurrence
Recording

0

2 3

6 9

0

2 3

6 9

0
2

0+2
3

Construct ICG

Cluster ICG

Cache Emb/Psum

book5,…
book3,…
book9,…

Update
(offline)

book0: 200
book1: 35
book2: 129 1

2

34

5

Figure 6: Usage model of GRACE.
RuntimeAnalysis.To evaluate the runtime overhead ofGRACE

clustering algorithm, we implement a parallel version of this algo-

rithm in C++ using OpenMP. To best match our estimation to a

data center deployment scenario, we run this clustering algorithm

on a high-end server-grade CPU discussed in §6.2. Using a 128-

thread implementation, Fig. 5 compares the clustering speeds of

GRACE and MERCI. GRACE achieves 8.3× faster clustering on

average among all datasets, and 26.6× among the mixed datasets

that have a larger number of items. This shows that the GRACE
algorithmic framework meets one of its key goals, i.e., designing a
practical and scalable algorithm. With the low-cost scalable cluster-

ing algorithm, GRACE can adapt to frequent user-item preference

behavior changes even at an update frequency of hours.

5 GRACE SYSTEM DESIGN
The algorithmic framework of GRACE is generic and can apply to

various types of memory systems. Here, we consider the use case

of a CPU-GPU heterogeneous system and present GRACE system

design. Our system modeling choice is motivated by the fact that

this type of system is widely adopted in today’s data centers that

execute DLRMs [25, 45, 63, 76].

5.1 Usage Model
Fig. 6 depicts a high-level overview of the usage model of GRACE.
It consists of online profiling of user-item interactions, offline ICG

construction, clustering, and populating the cache spacewith partial

sums of clusters. GRACE is immediately deployable on commodity

hardware platforms. In what follows, we detail the GRACE online

and offline components.

Online profiling. While running DLRM inference in a data

center, GRACE samples a subset of users, and records their item in-

teractions. Specifically, it records which items are accessed together

(i.e., pairwise item co-occurrence recording as depicted in Fig. 6)

and lazily updates the ICG. The lazy nature of graph updates means

that the incoming edges to the graph can be buffered and processed

at a later point in time. This ensures that the recording phase does

not interfere with the performance of the ongoing DLRM inference.

Offline analysis. As presented in Fig. 6, GRACE collects the

edges recorded during the online profiling phase, and constructs

the ICG offline. The constructed ICG is then clustered to find fre-

quently accessed item combinations as discussed in §4. For each

cluster, GRACE identifies and fetches the embedding vectors of

the constituent nodes, computes psums, and caches embedding vec-

tors and psums into the cache space. GRACE generates clusters

in decreasing order of expected cost-benefit efficiency, as shown

in Algorithm 1. It then stores clusters of psums accordingly to the

GPU and then the CPU. As shown by prior industrial [63] and aca-

demic [1, 34, 48] works, DLRMs employ a remapping table to keep

track of cached items. GRACE re-purposes this remapping table to

reflect the cached item set. More details on how to filter cached and

non-cached accesses, and how to determine the addresses of psums
are presented in §5.3. Note that the clustering of ICG and comput-

ing/caching psums does not affect DLRM inference latency as they

are carried out offline. Using psums does not change the reduction
results; GRACE does not affect DLRM inference accuracy.

Justification of the usagemodel.As shown in priorworks [50],
data center operators typically employ feedback-driven [11] and

post-link optimizations [47, 56] to improve the performance of their

workloads. In the case of DLRMworkload, for example, a data center

operator like Meta may profile and record user-item interactions

for a week, analyze them offline to create a cache space, and deploy

the updated system for inference in subsequent weeks. Several

prior works [5, 11, 39–41, 56] have successfully demonstrated that

profile-guided techniques, similar to GRACE, are practical and they
are deployed in data centers today.

5.2 Heterogeneity Awareness
One of the key goals of GRACE is to achieve a heterogeneous
memory-aware framework that also optimizes for high aggre-

gate memory utilization. To compare, MERCI optimizes for a single

metric of maximizing the memory traffic reduction. Large clusters

formed by MERCI, while yielding a greater bandwidth reduction,

prevent most embeddings from being stored in a capacity-limited

cache space. In that case, the main memory becomes the throt-

tling bottleneck in processing user requests, and it prevents a high

heterogeneous memory utilization.

To combat this, GRACE can be tuned to form appropriately

sized clusters to store a greater diversity of item embeddings and

combinations to effectively use the cache space. GRACE uses the

parameters MAX_CLUSTER_SIZE and tolerance_factor discussed

in Algorithm 1 to navigate the complex trade-off space of memory

traffic reduction and balance of the heterogeneous memory band-

width. To be able to apply GRACE to arbitrary input and get the

best speedup, GRACE uses a lightweight decision engine to find the

best parameter given dataset characteristics. We use three features

from the dataset input: number of items, average pooling factor, and
average node degree in ICG to train the decision engine. We use the

decision tree implementation from scikit-learn [60] library and use

an optimized CART (Classification and Regression Trees) algorithm.

The decision engine can pick the optimal or near-optimal combina-

tion of maximum cluster size and tolerance without exhaustively

289

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

4, 6, 26, 27, 69, 72, 73, 89, 97Accessed Item IDs:

4, 6, 26, 27 69, 72, 73, 89, 97
Index SplitGPU CPU

See Alg. 5 for
address

computation
Addr
Gen

Cluster Size Decreases

GPU Memory

Clusters of
same size
grouped
together

0x200

CPU Memory

Addr
Gen

0x25c

Address Generation
Example

Offset ID: 0, 2

0 1 0+
1 2

0x200

0+
1+
2

0+
2

1+
2

offset
001 011 111

Addr(0+2):
0x200+1’b101-1

101

Cluster Size Decreases

Figure 7: Example of GRACE cache space layout and address
generation. User access IDs are compared with the starting
address of each unique length of the cluster group to find
any clustered accesses. Those clustered accesses have their
partial sum ready in the memory, the address of which can
be directly computed based on their IDs.

experimenting with all possible combinations. The decision engine

accuracy performance is detailed in Appendix §C with a full sweep

of different maximum cluster sizes and tolerance combinations

shown in Fig. 20.

5.3 Address Generation
As detailed in §5.1, GRACE constructs and clusters an ICG, and

stores psums into a cache space offline. To efficiently use these

psums to improve end-to-end performance, it is crucial to design an

efficient cache address computation logic. To this end, we propose

a cache data layout and corresponding address generation tech-

nique for efficient GRACE system design. The goal of our designed

combined cache data layout and address generation is to compute

the address based on the accessed user index at an extremely low

cost in software. Fig. 7 shows the proposed layout of cached data,

where the clusters of the same sizes are grouped together and laid

out adjacent to one another in the address space. Notably, GRACE
employs a software-managed cache space to avoid hardware addi-

tions to commercial hardware platforms. Because software injects

cache lines offline, it does not disturb the ongoing inference cycles.

To understand cache layout and address generation with a simple

example, assume that the largest size cluster is 4 nodes. GRACE
first stores all 4-node clusters, then 3-node clusters, and so on. The

item IDs are remapped in the order of clusters. Algorithm 5 (see

Appendix §A.2) presents the pseudocode for generating redirected

addresses. Given the embedding index of the accessed item, the

address generation logic can quickly derive whether the index be-

longs to the CPU or the GPU. The memory location of the cluster,

the cluster size, cluster ID, and offset within the cluster are used

to determine specific psum addresses (Fig. 7 right). With the above

cache layout, the user index only needs to compare with the starting

address of each unique length of the cluster group (in practice at

most 8 entries) and then compute the address of the embedding

vector/partial sum without accessing additional data structures.

5.4 End-To-End System Design
Fig. 7 presents the end-to-end system execution of GRACE. The
psums are pinned in the CPU and GPU memory using GRACE
software. Similar to an earlier work, we execute on a heteroge-

neous CPU/GPU system [14], and we use 1 GB super pages to

avoid any paging overhead. GRACE re-purposes the remapping

table [1, 34, 48, 63] in software to process the incoming user re-

quests of embedding layers. The remapped and sorted indices split

the requests to either CPU or GPU. With a software-defined cache

space, the item indices can directly translate into the cluster ID

and offset within the cluster. Using Alg. 5, the redirected addresses

are used to correctly serve the requested indices with psums in
the heterogeneous memory. The item embedding reduction is then

executed on both CPU and GPU simultaneously before the CPU

results are sent and reduced with the GPU results (see Fig. 1(b)).

Each batch synchronously reduces item embeddings and computes

sparse features on GPUs before processing the top MLP layers. The

address generation process of the batch of users is overlapped with

the item embedding reduction of the previous batch to ensure that

address generation is not on the critical path. We show in §7.1

that the latency of address generation is negligible compared to

embedding reduction time.

6 METHODOLOGY
6.1 Real-World Datasets
We use a variety of datasets from different web service vendors,

shown in Table 1. We choose datasets of different sizes and average

pooling factors. The average pooling factor of a dataset is defined as

the number of items, on average, reduced by each user to compute

sparse embeddings.

Table 1: Real-world datasets from web service vendors.
Category Dataset Name Avg. Pool. Factor #Items

Small

Steam (stm) [36, 59, 71] 71.8 10,978

Anime (ani) [2] 106.3 11,200

MovieLens20M (mov) [27] 144.4 26,744

Medium

DBLP (dblp) [62] 61.8 540,459

AmazonOffices (off) [29] 64.0 598,943

Twitch (twi) [61] 30.5 739,991

Large

AmazonSports (spo) [29] 96.1 1,505,707

AmazonClothes (clo) [29] 82.0 2,345,346

In addition to evaluating uniform datasets, we also present an

evaluation with a mixture of the datasets to model the real-world

recommendation system that has multiple embedding tables of

different sizes and properties. Table 2 lists the mix of our datasets.

For each dataset, we split by 50:50 ratio to profile the behavior and

estimate inference performance (we sweep the training/test ratio

in §B.3). We use the embedding dimension of 1024 and the user

batch size of 1024. For end-to-end speedup analysis, we use DLRM

models in Table 3.

Table 2: Experimented mixture of datasets.

Dataset Name Mixture of Dataset Classes

M1 twi-mov-ani-stm 1M+3S

M2 clo-off-dblp-ani 1L+2M+1S

M3 spo-off-dblp-twi 1L+3M

M4 clo-spo-off-dblp 2L+2M

6.2 System Configuration
For sampled user traces, we build ICG and form clusters using

the GAPBS [6] framework. We deploy all the inference tasks on a

high-end server and measure the performance. For a heterogeneous

memory system deployment, we use an Intel Xeon Platinum 8380

CPUwith 80 physical cores and 512GB 32-channel DDR4-3200 main

memory as the CPU host. We use NVIDIA A40 with 48 GB GDDR6

290

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

memory as the GPU device. The embedding table reduction oper-

ation executed on CPU uses AVX-512 instructions, same as [25].

We use OpenMP to parallelize multiple embedding-reducing opera-

tions from different users and we verified the full utilization of CPU

bandwidth. We also verified the correctness of the embedding layer

functionality since GRACE does not alter any reducing results of

embedding layer operations.

While GRACE presents a generic algorithmic and system design

framework to improve DLRM inference throughput, we evaluate

GRACE and prior works [34, 48] using a heterogeneous CPU-GPU

system for a fair comparison. GRACE, however, can be generalized

and adapted to any heterogeneous memory configuration with a

main memory and cache space.

Table 3: DLRM models for end-to-end performance analysis.

DLRMModel Bottom MLP Top MLP Num. of table

RM1 [24, 26] 128-64-32 256-64-1 8

RM2 [24, 26] 256-128-64 128-64-1 32

RM3 [24, 26] 2560-1024-256-32 512-256-1 10

RM4 [78] - 200-80-2 3

6.3 State-of-the-Art Baselines
Infinite GPUmemory. This solutionmodels an infinite GPUmem-

ory capacity that can host full embedding tables in GPU memory,

regardless of size. It does not store any psums.
CPU only. This baseline models hosting full embedding tables

in the CPU memory. We use all 80 cores for executing DLRM.

Off-the-shelf clustering techniques. We use the state-of-the-

art graph clustering algorithm Metis [46] that can apply to ICG

clustering. Metis uses a recursive k-way multi-level graph parti-

tioning algorithm to form clusters.

FAE [1].We model an ideal performance of FAE that places a

subset of highly accessed item embedding vectors in a cache space.

There is no memory traffic reduction mechanism in FAE. To report

the optimal performance of FAE, we sweep every possible cut-off

frequency value for each dataset separately. The performance is

also an indicator of the upper bound performance of utilizing the

heterogeneous memory without reducing the memory traffic.

SPACE [34]. SPACE is a state-of-the-art recommendation sys-

tem inference framework that uses static analysis of user pref-

erences to find popular items. It significantly outperforms other

hybrid DRAM management frameworks [15, 16, 65]. SPACE caches

the single popular items and an exhaustive set of combinations of

two items in GPU memory. SPACE offers a rich design space in

terms of the fraction of single versus partial embedding sums stored

in the cache space. We report the results for the best-performing

parameter setting by extensively sweeping the value of this fraction.

MERCI [48].MERCI is a state-of-the-art framework to generate

clusters of psums to reduce the memory traffic. Although MERCI is

proposed for a DIMM-only system, we assume that their clusters of

psums are stored in GPU memory. We use the open-source imple-

mentation [3] from authors. Additionally, we navigate the subgroup

size-performance trade-off in MERCI to find the best-performing

parameters and report the optimal performance numbers.

Oracle-of-2. We model an oracle with a psum of 2 that can find

partial sums of any 2 item embeddings. While an oracle-of-3 or

larger is possible in theory, we choose the oracle-of-2 because it

provides a reasonable reduction factor roofline to compare the mod-

eled systems. For this oracle, we assume that it perfectly balances

the memory bandwidth in a heterogeneous memory system (§6.2).

7 EVALUATION RESULTS
7.1 Performance Analysis
GRACE vs. prior works. Fig. 8 compares the embedding layer

throughput ofGRACEwith CPU only,Metis clustering [46], FAE [1],

SPACE [34], MERCI [48], and an Oracle-of-2 normalized to an in-

finite GPU memory solution. GRACE and prior works use extra

memory capacity to store embedding vectors/partial sums that is

equal to 1× the size of the original embedding table. The figure

shows that CPU slows down the execution by 3.7× compared to

the infinite GPU memory baseline. This is because the compute

throughput and peak memory bandwidth of GPU are much higher

than CPU. FAE achieves 1.1× better performance than the base-

line. We sweep every possible cut-off frequency for each dataset

separately and report the best performance. FAE only marginally

improves the performance of the baseline because of no memory

traffic reduction. Moreover, the figure shows that, on average,

the off-the-shelf clustering algorithm (Metis) only achieves 0.34×
the baseline performance. The slowdown is attributed to the fact

that a generic clustering algorithm does not contribute to partial

sum reductions or heterogeneous memory utilization effectively.

This clearly motivates the design of a novel ICG clustering
algorithm to best accelerate DLRM inference.

Fig. 8 shows that GRACE outperforms SPACE and MERCI by

1.5× and 1.4×, on average. As discussed in §6.3, we report the best

performance of SPACE and MERCI based on extensive parameter

tuning. This significant performance improvement is attributed to

the GRACE algorithm and system design that (a) finds popular item

combinations of arbitrary lengths in a scalable fashion, and (b) is

memory heterogeneity aware by effectively navigating the trade-off

of expanding the partial sum sizes or storing more item embeddings.

GRACE effectively bridges the performance gap between prior

works and oracle-of-2 by 52.1%. The performance of SPACE and

MERCI are limited due to limited reduction in memory traffic and

memory heterogeneity unawareness, respectively. This, in turn,
shows that GRACE finds high-quality popular item combinations to
effectively reduce the memory traffic, and rejects over-sized clusters to
prevent DRAM throttling. This optimizes the collective heterogeneous
memory bandwidth. Interestingly, we find thatGRACE performance

is positively correlated with the average ICG node degree. The best-

performing datasets over prior works (stm, ani, mov, and M1) have

the highest ICG average node degrees of (1405, 1148, 2107, and 900).

Heterogeneous memory time split. To further understand

the performance of different baselines, Fig. 9 shows the time split

for the embedding reduction in CPU and GPU memories. Ideally,

a system that splits memory traffic to balance the execution times

spent on CPU and GPU can achieve high throughput.

SPACE moderately reduces the GPU execution time by 15% com-

pared to a system with infinite GPU memory, which determines

the overall throughput of SPACE. Because GPU has a much higher

memory bandwidth available compared to CPU, a moderate mem-

ory traffic redirected from GPU to CPU memory will result in a

significant increase in CPU memory time. This result underscores

291

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0
1
2
3

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t
(x

) Inf. GPU Mem
CPU Only

Metis
FAE

SPACE
MERCI

GRACE
Oracle-of-2

Figure 8: Embedding layer throughput of Infinite GPUMemory, CPU only, Metis [46], FAE [1], SPACE [34], MERCI [48], GRACE
and Oracle-of-2 normalized to Infinite GPU Memory. All works use 1× additional table capacity to store partial sums.

0.25 0.5 0.75 1.0
GM of execution time breakdown norm. to Inf. GPU Mem (x)

GRACE

MERCI

SPACE
Inf GPU

Addr Gen GPUCPU
GPU CPU

GPUCPU
GPU

Figure 9: Embedding layer execution time breakdown across
CPU and GPU memory, averaged among all datasets, nor-
malized to the infinite GPU memory execution time. Ideally,
the memory system achieves a balanced execution.

the value of achieving high memory traffic reduction to speed up the
workload. MERCI performance, on the other hand, is determined by

the embedding reduction time on the CPU. This is because reducing

memory traffic is the sole design objective of MERCI, which leads to

large cluster sizes. In a real-world heterogeneous memory setting,

this leads to spilling of many embedding psums to CPU memory,

inadvertently increasing its execution time.

The GRACE design effectively navigates the complex design

space of reducing memory traffic by storing large clusters versus

distributing more memory traffic to the heterogeneous memory

system. Fig. 9 shows that GRACE achieves a near-perfect execution

time split between CPU and GPU to maximize overall application

throughput. The address generation time is shown separately be-

cause it refers to the latency to compute memory addresses and

distribute psums/item embedding requests to CPU and GPU. This is

off the critical path of the embedding reduction latency as it can be

pipelined with the previous batch reduction. Finally, the figure also

shows that the address computation time is negligible (6%) com-

pared to the time to load and reduce item embeddings. The GRACE
runtime system thus can fully hide address computation latency by

overlapping it with the embedding reduction of the previous batch.

Memory traffic reduction. Fig. 10 shows the comparison among

different baselines. The oracle-of-2 achieves a 50% reduction in the

memory traffic as it stores psums of all two-item embeddings (not

practical). SPACE only reduces memory traffic by 9% because it

stores partial sums of two item combinations of a very small subset

of items. MERCI and GRACE can reduce memory traffic by 37%

and 40%. Note that dblp has a memory reduction factor of 2.3× for

GRACE, which is higher than the modeled oracle-of-2. Although

MERCI inspects full training traces to generate optimal clusters, the

high complexity of such inspection forces the algorithm to break

into sub-groups. During this process, co-accesses between different

sub-groups are ignored and MERCI may miss the opportunity to

analyze a global set of co-accessed items. GRACE, on the other

hand, does not have such constraints and the ICG captures accesses

of all items. This result also shows that even in a traditional DIMM-
only memory system, GRACE results in higher memory reduction
and outperforms MERCI.

Tail latency comparison. Fig. 11 shows the 95th percentile

latency of processed batches of compared works, normalized to

the infinite GPU memory solution. The figure shows that GRACE
consistently outperforms the state-of-the-art works in terms of

tail latency as well as throughput. Specifically, GRACE improves

SPACE by 1.54× and MERCI by 1.41×.
End-to-end DLRM performance. By speeding up the embed-

ding reduction phase, GRACE also significantly improves the end-

to-end throughput of DLRM. Fig. 12 shows that GRACE offers a

significant end-to-end performance improvement of 1.6× over infi-

nite GPU memory on embedding-heavy models such as RM2. In

MLP-heavy models such as RM3, GRACE achieves 1.2× speedup,

outperforming prior works. DLRMs are executed at a population

scale. Even a single percent performance improvement in data cen-

ter applications leads to a significant reduction in Total Cost of

Ownership (TCO) and global carbon footprint [5, 35]. DLRMs con-

sume more than 60% of AI inference cycles [26]. Fig. 12 shows that

GRACE provides significant end-to-end performance improvement

of 1.2-1.6× compared to MERCI and offers a low-cost solution, ob-

viating intrusive hardware modifications. Therefore, GRACE can

be immediately adopted in today’s data centers.

Understanding the improvements over MERCI.MERCI is

the state-of-the-art framework aiming at memory traffic reduc-

tion in DLRM. Interestingly, we observe that GRACE outperforms

MERCI in both memory traffic reduction and end-to-end through-

put. The reason behind this improvement is twofold. 1) GRACE has

a global view of user-item interactions, irrespective of the dataset

size. This is enabled by our novel graph construction that allows

scalable analysis at a global dataset scale. §4.4 shows that GRACE
analysis scales from both algorithmic complexity and runtime stand-

points. MERCI’s analysis, on the other hand, has a fundamental

limitation that it operates at a sub-group level and fails to capture

a global view of user-item interactions due to scalability issues.

2) While MERCI only aims to improve memory traffic reduction,

the proposed GRACE algorithm is memory heterogeneity-aware.

GRACE not only improves memory traffic reduction, but also re-

sults in a balanced memory traffic distribution further improving

end-to-end throughput.

292

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0

1

M
em

or
y

Tr
af

fic
Re

du
ct

io
n

(x
)

1.
00

0.
99

0.
92

0.
63

0.
60

0.
50

No reduction Metis SPACE MERCI GRACE Oracle-of-2

Figure 10: Memory traffic reduction in DLRM inference of compared works (lower is better).

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0
1
2
3

95
-P

er
ce

nt
ile

La
te

nc
y

Im
pr

ov
em

en
t

(x
) Inf. GPU Mem

CPU Only
Metis
FAE

SPACE
MERCI

GRACE
Oracle-of-2

Figure 11: Embedding layer 95th percentile latency of compared works normalized to Infinite GPU Memory.

RM1 RM2 RM3 RM4
Datasets

0

1

2

En
d-

to
-e

nd
Th

ro
ug

hp
ut

Im
pr

ov
em

en
t

(x
)

Inf. GPU Mem
CPU Only

Metis
FAE

SPACE
MERCI

GRACE
Oracle-of-2

Figure 12: End-to-end DLRM inference performance of com-
pared works normalized to Infinite GPU Memory.

stm ani movdblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0

1

2

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t
(x

)

Inf. GPU Mem
Metis

SPACE
MERCI

GRACE
Oracle-of-2

Figure 13: Embedding layer throughput comparison in a ho-
mogeneous GPU memory platform.

Comparison using additional hardware configurations.
GRACE algorithm-system co-design is agnostic to any specific

hardware configuration. While a CPU-GPU platform represents a

baseline modeling for a majority of our evaluation, next, we show

the performance of GRACE using two other hardware platforms.

First, we compare the performance of various baselines on a

homogeneous GPU memory in Fig. 13. This experiment assumes

an infinite GPU memory. Because this platform does not have

heterogeneous memory, the performance is directly correlated with

memory traffic reduction. GRACE outperforms MERCI marginally

by 5%. This corroborates with the traffic reduction ratio in Fig. 10.

Furthermore, GRACE significantly outperforms Metis and SPACE

due to improved memory traffic reduction.

Second, Fig. 14 shows the embedding layer throughput improve-

ment on a system having hybrid DIMM-HBMmemorywith Process-

In-Memory (PIM) technology (evaluation similar to SPACE [34]).

We simulate the embedding reduction operations in PIM using a

trace-based simulation methodology in Ramulator [42]. The mod-

eled DRAM consists of 8 DDR4-3200 channels and 2 stacks of

bandwidth-optimized cache space of HBM2 (specifications adopted

from [53, 55]). Fig. 14 shows an interesting trend that FAE outper-

forms SPACE. This shows that heterogeneous memory awareness

is increasingly important when the bandwidth capability varies

across different platforms. The figure also shows that the memory

heterogeneity-aware design of GRACE can adapt to different tech-

nological parameters, and consistently offer the best performance

compared to the state-of-the-art. By optimizing memory traffic

reduction and distribution, GRACE outperforms MERCI by 1.5×.

Table 4: Absolute throughput numbers (i.e., #batches pro-
cessed per second) of an infinite GPU memory baseline.

Dataset stm ani mov dblp off twi
Throughput 976 1125 668 1594 2787 4965

Dataset spo clo M1 M2 M3 M4
Throughput 1924 2332 361 492 667 583

Absolute performance numbers.To enable better reproducibil-
ity of results and future comparison with GRACE, Table 4 shows
the absolute throughput numbers of an infinite GPU memory base-

line as shown in Fig. 8. This result is obtained by running a full

embedding layer on the GPU platform (§6.2). The reported absolute

numbers are of the same order as a recent industrial work Deep-

RecSys [24] (our baselines are more optimistic than DeepRecSys

as our embedding layer execution baseline is natively optimized

using CUDA/C++ compared to PyTorch). All other absolute num-

bers reported by our compared works can be inferred by scaling

the absolute numbers with speedups shown in the figures.

7.2 Sensitivity Analysis
GPU memory capacity. In practice, the capacity budget for the

high bandwidth memory can be less than 1.0× because of the

capacity-limited GPU memory and large embedding table sizes.

Multiple embedding tables also share the GPU memory capacity

resources. To measure the effectiveness of GRACE in a more con-

strained environment, we sweep the allowed cache space capacity

to 0.5 × and 0.25 × embedding table size. Fig. 15 its effect on embed-

ding reduction performance. With more constrained cache space,

293

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0
1
2
3
4

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t
(x

) Inf. GPU Mem
CPU Only

Metis
FAE

SPACE
MERCI

GRACE
Oracle-of-2

Figure 14: Embedding layer throughput comparison for a DIMM-HBM heterogeneous memory with PIM capability.

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM0

2
GPU memory capacity = 1.0x

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM0

2
GPU memory capacity = 0.5x

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0

2

 T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(x
)

GPU memory capacity = 0.25x

SPACE MERCI GRACE

Figure 15: Performance sensitivity of compared works for
different GPU memory capacities normalized to SPACE.

MERCI further exacerbates DIMMmemory throughput by using the

constrained space for storing psums. GRACE , however, can adapt

to the more constrained space by rejecting clusters at an earlier

threshold. GRACE balances the throughput of the heterogeneous

memory system. On average, GRACE outperforms SPACE by 1.63×
and 1.54× in the tested configurations of constrained cache space.

7.3 Additional Results
Extensive experiments and further insights on energy analysis and

sensitivity studies are presented in detail in Appendix §B.

8 RELATEDWORK
Profiling of recommendation systems [24, 26] shows that the
embedding layer accounts for more than 25% and 80% of the infer-

ence latency in the Meta RM1 and RM2 model. These RM models

consume more than 60% of Meta’s data center AI inference cycles.

While using specialized DNN accelerators or employing batched in-

ference can significantly [9, 12, 17, 23, 30–33, 51] improve the DNN

layer throughput, the embedding layer performance is still bottle-

necked by the memory bandwidth [24, 26, 28, 34, 38, 43, 44, 76].

Exploiting the embedding table locality.Analysis of the user-
item interactions has been studied in prior works [1, 7, 20, 34, 37,

38, 43, 58, 63, 64, 68, 71, 75], such as reducing the dimension and

exploiting the power-law characteristics observed in the embedding

table operations. SPACE [34] is the most recent work that exploits

both singular hot items and exhaustive combinations of partial

sums of two hot items. MERCI [48] captures the most efficient

psums to reduce the memory traffic. GRACE explores the design

space of both memory traffic reduction and heterogeneous memory

utilization and GRACE analysis is derived by analyzing real-world

service vendors instead of artificially generated distribution [24, 25].

Near memory processing and memory technology for im-
proving embedding table operations. Near memory processing

is explored in many prior works [38, 43, 57, 69, 70]. They serve as

the heterogeneous memory module and significantly increase the

available memory bandwidth. Fafnir [4] uses a tree-like reduction

hierarchy among different ranks to improve the reduction efficiency

near the memory logic. Other memory technologies have been stud-

ied in prior works including SSD (solid-state drive) [67, 73] and

NVM (non-volatile memory) [19] to aid the embedding layer op-

eration, which has a dual challenge of large capacity and a high

bandwidth requirement. GRACE assumes a hybrid DRAM model

and uses GPU memory as a software-managed cache and this algo-

rithm framework can generalize to these newmemory technologies.

9 CONCLUSION
This paper proposed GRACE—a novel algorithm-system co-design

framework to significantly accelerate DLRM inference by speeding

up the embedding reduction stage. To reduce the memory traffic

of sparse DLRM layers, GRACE proposed mapping the problem

of finding popular item combinations to a graph problem. GRACE
presented an Item Co-occurrence Graph (ICG) to scalably ana-

lyze popular item combinations. GRACE then proposed a low-cost

graph clustering algorithm that finds popular item combinations of

arbitrary lengths and inserts these frequently accessed item combi-

nations into a software-managed cache space. The GRACE runtime

system exploited partial embedding sums to significantly reduce

memory traffic. Our evaluation showed that GRACE significantly

outperforms state-of-the-art prior works SPACE and MERCI by

1.5× and 1.4×, respectively.

10 DATA AVAILABILITY STATEMENT
The code of this work is also available on Zenodo [74].

ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd Laurent Bind-

schaedler for their insightful feedback. The material is based on

research sponsored by Air Force Research Laboratory (AFRL) and

Defense Advanced Research Projects Agency (DARPA) under agree-

ment number FA8650-18-2-7864. The U.S. Government is authorized

to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views and

conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of Air Force Re-

search Laboratory (AFRL) and Defense Advanced Research Projects

Agency (DARPA) or the U.S. Government. This work was also sup-

ported by the United States-Israel BSF grant number 2020135.

294

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

A APPENDIX: ADDITIONAL ALGORITHMS
A.1 ICG Construction Algorithm
Algorithm 4 presents the pseudocode of the graph construction

phase into ICG. All pairs of items accessed by the user as item

co-occurrences. We use an item co-occurrence buffer to construct

a weighted graph by increasing the edge-weight by one for each

co-occurrence.

Algorithm 4 Pseudocode for item co-occurrence graph (ICG) con-

struction

1: procedure BuildICG(user_accesses) ⊲ Offline

2: Input: user_accesses: Historical data of item accesses by sampled users

3: Output: G: Item co-occurrence graph (ICG)

4:

5: recorded_edges = []
6: for all user_access ∈ user_accesses do ⊲ Online lazy recording

7: num_items = user_access.size() ⊲ #items accessed by user

8: // For each user access, iterate over all unique item pairs
9: for i in (0, num_items) do
10: for j in (i + 1, num_items) do
11: item_i = user_access[i]; item_j = user_access[j];
12: // Lazy buffering of graph edges
13: recorded_edges.append(edge(item_i, item_j))
14:

15: Initialize empty graph G
16: for edge in recorded_edges do ⊲ Offline graph construction

17: if edge not in G then
18: G.add_weighted_edge(edge, 0)

19: G.increment_edge_weight(edge)

20: return G

A.2 Address Generation Algorithm
We detail the address generation process in Algorithm 5. One user

from a batch accesses remapped indices. The remapped indices

are sorted, streamed in, and compared with the starting address

of grouped clusters on CPU and GPU. After finding the group, the

index can directly translate into cluster ID and offset within the

cluster because clusters are grouped by size.

If the access results in amiss to the previous cluster, the address of

accessing the single-item embedding at item_offset is located at

2
item_offset−1 from the starting address of the cluster. If the access

is a hit of the previous cluster, it indicates that psum is accumulated

previously. Because the memory layout of embeddings and partial

sums is in a bitmap fashion within a cluster, one-bit activation will

direct to the address with the psum that accumulates the hit index.

The new psum address is generated by adding a 2
item_offset

to the

previous item embedding/psum address.

After directing all access indices to the proper address across the

heterogeneousmemory, the corresponding embedding items/partial

sums are reduced to satisfy the batch of users’ embedding layer

requests.

A.3 Multiple Embedding Table Support
Real-world DLRM models have multiple embedding tables that

share the available capacity-limited HBM resources. We propose

Algorithm 6 to design cache space for multiple embedding tables.

Similar to previous industrial proposals [24, 43, 54, 78], we assume

that the embedding tables are independent, i.e., items in an embed-

ding table do not reduce with items in a different table. Algorithm 6

shows the clustering pseudo-code to support multiple embedding

tables. The procedure only differs when building the ICG. Because

different embedding tables have mutually exclusive nodes, for each

Algorithm 5 Pseudocode for Address Generation on User Accesses

1: procedure AddressGen(user_accesses) ⊲ Online
2: Input: user_accesses: Incoming data of item accesses by runtime users

3: Input: start_addr: Starting address of each cluster size group

4: Output: redirected_accesses: Redirected addresses of item embeddings and partial sums

that users request for correct reduction

5:

6: prev_c_id = None
7: prev_g_size = None
8: temp_addr = None
9: redirected_accesses = []
10: for all access ∈ user_accesses do
11: // Find which group, cluster, and whether CPU/GPU the access belongs to
12: g_size = access.get_g_size();
13: c_id = (access - start_addr[g_size]) / g_size;
14: item_offset = (access - start_addr[c_id]) % g_size;
15: // If access has a diff. cluster from prev access, commit prev redirected addr
16: if c_id != prev_c_id or g_size != prev_g_size then
17: redirected_accesses.append(temp_addr);

18: temp_addr = start_addr[g_size] + c_id ×
(
2
𝑔_𝑠𝑖𝑧𝑒 − 1

)
19: temp_addr +=

(
2
item_offset − 1

)
;

20: else
21: temp_addr +=

(
2
item_offset

)
;

22: // Accumulate to the redirected addr to get item embeddings / partial sums
23: prev_c_id = cluster;
24: prev_g_size = g_size;

25: redirected_accesses.append(temp_addr);
26: return redirected_accesses

Algorithm6 Pseudocode for building the item co-occurrence graph

(ICG) for multiple embedding tables

1: procedure BuildMultiTableICG(user_accesses_per_table) ⊲ Offline

2: Input: user_accesses_per_table: Historical data of item accesses by sampled users for

each embedding table

3: Output: G’: Unified item co-occurrence graph (ICG) of multiple embedding tables

4:

5: Offset = []
6: item_id_offset = 0
7: for all t ∈ embedding_tables do ⊲ Item renaming for each embedding table

8: Offset.append(item_id_offset);
9: item_id_offset += total_size_emb[t];

10:

11: recorded_edges = []
12: for all t ∈ embedding_tables do ⊲ Iterate through multiple tables

13: for all user_access ∈ user_accesses_per_table[t] do
14: num_items = user_access.size() ⊲ #items accessed by user

15: // For each user access, iterate over all unique item pairs
16: for i in (0, num_items) do
17: for j in (i + 1, num_items) do
18: item_i = user_access[i] + Offset[t];
19: item_j = user_access[j] + Offset[t];
20: // Lazy buffering of graph edges
21: recorded_edges.append(edge(item_i, item_j))
22:

23: Initialize empty graph G’
24: for edge in recorded_edges do ⊲ Offline graph construction

25: if edge not in G’ then
26: G’.add_weighted_edge(edge, 0)

27: G’.increment_edge_weight(edge)

28: return G’
29:

30: procedure ClusterMultiTableICG() ⊲ Offline ICG clustering

31: Input: G’: Item Co-occurrence Graph (ICG) for multiple embedding tables

32: Input: renamed_nodes: Vertex set of G’ sorted by their degrees

33: Input: capacity_budget: Number of cache lines allowed in cache space

34: Output: cluster_list: Assignment of ICG nodes of multiple tables

35: // The same clustering algorithm directly applies on the renamed nodes.
36: cluster_list = ClusterICG(G’,renamed_nodes,capacity_budget)
37: return cluster_list

item index, we add an offset of the previous table size to avoid

duplication of the same item ID in different embedding tables. We

build the ICG accordingly and the resulting ICG has a collection of

all nodes of different embedding tables.

With this ICG, the problem of cluster forming for all embedding

tables is evaluated in the same graph using the same ClusterICG

algorithm in Algorithm 2. In this ICG, we can systematically analyze

the clustering benefit-cost efficiency and assign the HBM capacity

295

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

budget to each of the embedding tables. No heuristics are required

to find a proper distribution of capacity for each embedding table.

This shows the benefit of casting such a problem into a graph

problem. Different embedding tables equivalently become disjoint

partitions of an overall ICG, and can be evaluated altogether.

B APPENDIX: ADDITIONAL RESULTS
B.1 Performance Analysis: MERCI Variants
One of the reasons GRACE outperforms MERCI is that GRACE
imposes a limit on the maximum size of the cluster. As shown in

Fig. 9, this can effectively limit large clusters and allows a larger

number of item embeddings/psums to be placed on the size-limited

GPU memory. This way, the GPU memory utilization increases,

achieving a more balanced distribution of memory traffic. This mo-

tivates us to test variants of MERCI that can benefit from a similar

advantage. Fig. 16 presents the performance of MERCI-k variants.

Here, MERCI-k limits the maximum cluster size to k. We sweep k
from 2 to 5, and k equal to infinity (equivalent to vanilla MERCI

design:MERCI-inf). Fig. 16 shows that GRACE consistently outper-

forms all MERCI variants. While MERCI-k improves the memory

traffic distribution compared to MERCI-inf, this further limits the

memory traffic reduction. Fig. 16 shows that, compared to a MERCI

variant that optimizes heterogeneous memory utilization, GRACE
stills offers improved throughput by balancing both memory traffic

reduction and distribution.

B.2 Energy Consumption Analysis
Fig. 17 compares the energy saving of different baselines normal-

ized to the infinite GPU memory solution. Because GPU memory

consumes much less energy per data transfer byte than DIMM-

based memory [49, 53], infinite GPU memory achieves low power

consumption. GRACE achieves the best energy consumption com-

pared with other works and even performs marginally 4% better

energy consumption than infinite GPU memory. This is because

although GRACE keeps some embeddings in DIMM-based memory

to exploit a larger collective bandwidth for the best performance, it

efficiently utilizes psum to serve requests, which saves energy both

on CPU and GPU. Note that if GRACE is specifically configured

to optimize for energy consumption, GRACE-Energy can save 18%

energy compared to an infinite GPU memory configuration.

B.3 Sensitivity Analysis
Training ratio sensitivity. Fig. 18 shows that GRACE consis-

tently outperforms prior works even using a limited training set to

learn popular item combinations. Because every single user-item

interaction can produce multiple co-accessed patterns, even though

a limited set of the profiled user-item interaction, GRACE can ex-

tract co-access patterns effectively. GRACE achieves even a higher

speedup at a limited training set, achieving 1.66× and 1.46× over

SPACE and MERCI respectively at train/test ratio of 10:90.

Anchor node selection policy. Fig. 19 shows the performance

sensitivity of sweeping ICG anchor node selection in Algorithm 1.

In addition to ICG node degree, the other available options include

anchor node selection based on the item access frequency or all

random. The degree-based clustering performs marginally better

than frequency-based and outperforms random anchor node selec-

tion. This shows the robust nature of ICG clustering algorithm. It

enables GRACE to outperform prior works without any specific

requirement for choosing an anchor node for clustering.

B.4 Optimal Algorithmic Parameter Search
We show the parameter search process and their sensitivity involved

in Algorithm. 2.

Performance sensitivity on 𝛼 . We sweep the value of 𝛼 to

find its effect on performance. This parameter is used in estimating

the benefit of adding nodes to existing clusters in the proposed

clustering algorithm (see line 14 in Algorithm 3). We sweep 𝛼

Table 5: Performance of different 𝛼 normalized to the best
performing 𝛼 , averaged across datasets.

𝛼 0 0.25 0.5 0.75 1.0
GM 0.934 0.987 0.997 0.997 0.996

from 0 to 1, and find its effect on the performance of each work-

load. Table 5 presents the performance of each 𝛼 normalized to the

best performance, averaged across all workloads. This shows that

GRACE performance does not change significantly for 𝛼 ≥ 0.25,

and achieves an optimal performance with 𝛼 = [0.5, 0.75] (high-
lighted in green).

MAX CLUSTER SIZE and tolerance factor. Fig. 20 shows the
performance sensitivity of GRACE for different maximum cluster

sizes and tolerance factors. Maximum cluster size is a parameter

used in the proposed algorithm to limit the sizes of the formed

clusters (see line 20 in Algorithm 2). Tolerance factor adds a margin

for the estimated benefit to drop while still allowing a new node to

be added to an existing cluster (see line 19 in Algorithm 2). Both

hyperparameters modulate the cluster sizes. Fig. 20 only shows the

most interesting data points for each dataset; in reality, we sweep

the tolerance factor from 0 to 100.

Intuitively, allowing larger clusters leads to higher memory traf-

fic saving if partial sums of several items are cached. This, however,

limits the diversity of items to be cached due to limited cache space,

limiting the ability to divert more memory traffic to the cache space.

Therefore, there is a rich trade-off space between savings due to

each cluster and the diversity of cached items. GRACE navigates

this trade-off space to find the optimal hyperparameter for each

workload. We show the tuning process of these parameters below.

C APPENDIX: DECISION ENGINE DESIGN FOR
PREDICTING OPTIMAL PARAMETER
SETTING

The choice of maximum cluster size and tolerance affects the quality

of the selected popular items and their combinations, thus affecting

the overall performance. The optimal choice is different for different

input characteristics. Fig. 20 shows the speedup for each input graph

under different maximum cluster size and tolerance combinations.

To be able to apply GRACE to arbitrary input and get the best

speedup, we build a decision engine to pick the optimal or near-

optimal combination ofmaximum cluster size and tolerancewithout

exhaustively experimenting with all possible combinations.

We use three features from the input: number of items, aver-
age pooling factor, and average node degree in ICG to train the

296

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0
1
2
3

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t
(x

) Inf. GPU Mem
MERCI-2

MERCI-3
MERCI-4

MERCI-5
MERCI-inf

GRACE
Oracle-of-2

Figure 16: Throughput improvement of MERCI-k over compared baselines (higher is better).

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0

1

En
er

gy
 S

av
in

g
(x

)

Inf. GPU Mem
CPU Only

Metis
FAE

SPACE
MERCI

GRACE
GRACE-Energy

Figure 17: Energy saving in DLRM inference of compared
works normalized to Infinite GPUMemory (higher is better).

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM0.0

2.5 Train/Test Ratio = 50:50

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM0.0

2.5 Train/Test Ratio = 25:75

stm ani mov dblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0.0

2.5

 T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(x
)

Train/Test Ratio = 10:90

SPACE MERCI GRACE

Figure 18: Performance sensitivity of compared works for
different train/test ratios normalized to SPACE. GRACE con-
sistently outperforms the compared works even when the
training set is limited.

stm ani movdblp off twi spo clo M1 M2 M3 M4 GM
Datasets

0

1

2

Th
ro

ug
hp

ut
Im

pr
ov

em
en

t
(x

)

Inf. GPU Mem
SPACE

MERCI
GRACE-degree

GRACE-freq.
GRACE-random

Figure 19: Performance sensitivity of compared works for
different anchor node selection policies normalized to SPACE.
The available options are selected based on ICG node degree,
the item access frequency, and random.

decision engine. We use the decision tree implementation from

scikit-learn [60] library, which uses an optimized CART (Classi-

fication and Regression Trees) algorithm. The decision tree finds

the feature that yields the largest information gain at each level.

The output of the decision engine is the maximum cluster size and

tolerance combination that gives optimal performance. We define

the combination that gives the best speedup result as the strict
optimal combination, and we define a set of combinations that

gives a speedup no less than relaxing coefficient (rc) to the optimal

speedup as the relaxed optimal combination set. We use the

strict optimal combination to train the decision engine, and con-

sider the decision engine’s prediction accurate if it gives a result

that falls in the relaxed optimal combination set.

We train the decision engine with 80-20 random split for train-

test data, and we repeat the procedure 50 times with different

random seeds. The decision engine achieves an average accuracy

of 92.7% under a 90% relaxing coefficient.

D ARTIFACT APPENDIX
D.1 Abstract
This paper presents an algorithm-system co-design for improving

the performance of the embedding layer in Deep Learning Recom-

mendation Models (DLRMs). This document briefly describes how

to reproduce the main result of our paper. The performance results

shown in the paper are machine-dependent. For example, Fig. 8,

Fig. 13, and Fig. 14 show results on a CPU-GPU system, HBM-only

system, and DIMM-HBM system with Processing-In-Memory (PIM)

capability, respectively. To enable reproducing results in a timely

fashion on different machines, we discuss the methodology to re-

produce the main result of our paper that is machine-independent

(Fig. 10). Specifically, our instructions include 1) how to download

the input datasets, 2) how to pre-process these datasets, 3) how to

reproduce the memory traffic reduction results for each baseline,

and 4) how to generate a plot similar to Fig. 10. Expected result:

compared to a no-reduction baseline, GRACE reduces the memory

traffic by 1.7×.

D.2 Artifact Check-List (Meta-Information)
• Algorithm: Deep Learning Recommendation Model (DLRM)

• Program: c++ and python3
• Compilation: g++ 9.4.0
• Dataset: Steam (stm), Anime (ani), MovieLens20M (mov), DBLP

(dblp), AmazonOffices (off), Twitch (twi), AmazonSports (spo), Ama-

zonClothes (clo), mixture of datasets twi-mov-ani-stm (M1), mixture

of datasets clo-off-dblp-ani (M2), mixture of datasets spo-off-dblp-

twi (M3), mixture of datasets clo-spo-off-dblp (M4)

297

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 10 20 30

2

3

4

5

6

7

8

infi

1.63 1.63 1.63 1.63

2.45 2.48 2.5 2.5

2.15 2.1 2.12 2.14

1.5 1.44 1.44 1.43

1.15 1.1 1.09 1.08

0.96 0.93 0.92 0.9

0.87 0.84 0.83 0.81

0.7 0.7 0.7 0.7

Steam Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.42 1.43 1.42 1.43

1.81 1.76 1.63 1.47

1.85 1.98 1.79 1.49

1.09 1.21 1.95 1.49

0.82 0.86 1.4 1.49

0.71 0.73 0.93 1.5

0.66 0.66 0.74 1.5

0.59 0.6 0.66 1.5

Anime Speedup (x)

0 10 20 30

2

3

4

5

6

7

8

infi

1.3 1.29 1.29 1.29

1.75 1.74 1.75 1.74

2.09 2.06 2.07 2.08

1.51 1.47 1.46 1.46

1.14 1.07 1.07 1.07

0.94 0.9 0.9 0.9

0.85 0.82 0.82 0.82

0.77 0.77 0.77 0.77

Movie Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.93 1.93 1.93 1.93

1.13 1.19 1.3 1.94

0.47 0.49 0.53 1.95

0.31 0.32 0.34 1.95

0.25 0.25 0.27 1.92

0.22 0.22 0.23 1.89

0.2 0.21 0.21 1.89

0.18 0.18 0.19 1.88

DBLP Speedup (x)

30 40 50 60

2

3

4

5

6

7

8

infi

1.28 1.28 1.28 1.28

1.44 1.47 1.47 1.38

0.85 0.86 0.92 1.42

0.52 0.53 0.57 0.97

0.39 0.39 0.4 0.68

0.32 0.32 0.33 0.45

0.28 0.27 0.28 0.35

0.21 0.21 0.21 0.28

Office Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.18 1.18 1.18 1.18

0.71 1.12 1.22 1.18

0.68 0.76 1.23 1.18

0.44 0.57 1.16 1.18

0.44 0.46 0.97 1.19

0.39 0.4 0.79 1.19

0.35 0.36 0.64 1.19

0.3 0.3 0.44 1.19

Twitch Speedup (x)

20 30 40 50

2

3

4

5

6

7

8

infi

1.28 1.28 1.28 1.28

1.5 1.51 1.5 1.49

0.9 0.9 0.92 0.99

0.54 0.54 0.55 0.59

0.39 0.39 0.39 0.4

0.31 0.31 0.31 0.31

0.26 0.26 0.26 0.26

0.19 0.19 0.19 0.19

Sports Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.35 1.35 1.35 1.35

1.15 1.22 1.43 1.36

0.65 0.69 0.91 1.36

0.41 0.43 0.68 1.36

0.31 0.32 0.47 1.36

0.26 0.26 0.34 1.36

0.23 0.23 0.27 1.36

0.17 0.17 0.23 1.36

Clothes Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.27 1.28 1.27 1.27

1.45 1.44 1.36 1.29

1.66 1.63 1.45 1.29

1.81 1.9 1.56 1.29

1.29 1.33 1.82 1.29

1.07 1.09 1.38 1.29

0.96 0.96 1.09 1.29

0.75 0.75 0.87 1.29

M1 Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.44 1.44 1.44 1.44

1.58 1.6 1.62 1.46

0.93 0.99 1.35 1.46

0.59 0.61 0.77 1.47

0.45 0.46 0.53 1.47

0.38 0.38 0.42 1.47

0.33 0.34 0.36 1.47

0.25 0.25 0.3 1.47

M2 Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.48 1.48 1.48 1.48

1.24 1.29 1.47 1.49

0.62 0.67 0.93 1.5

0.39 0.41 0.53 1.5

0.3 0.31 0.36 1.51

0.25 0.26 0.29 1.51

0.22 0.23 0.25 1.51

0.18 0.18 0.2 1.51

M3 Speedup (x)

40 50 60 70

2

3

4

5

6

7

8

infi

1.5 1.5 1.5 1.5

1.1 1.11 1.27 1.51

0.63 0.67 0.92 1.51

0.4 0.42 0.56 1.52

0.3 0.31 0.38 1.52

0.25 0.26 0.29 1.52

0.22 0.22 0.25 1.52

0.17 0.17 0.2 1.52

M4 Speedup (x)

M
ax

im
um

 C
lu

st
er

 S
iz

e

Tolerance Factor (%)
Figure 20: Performance sensitivity of GRACE to maximum cluster size and tolerance factor normalized to Infinite GPUMemory.

• Run-time environment: Implementation should run natively

• Hardware: CPU with 64 GB main memory or more

• Execution: Bash script for automatic compilation and execution

• Metrics: Memory traffic reduction

• Output: Memory access count in hbm_only_*_log/ folders, repro-

duced Fig. 10 in the paper in Fig10_plot/ folder
• Experiments: Memory access counts for GRACE, MERCI, SPACE,

and Metis

• How much disk space required (approximately)?: 70GB

• How much time is needed to prepare workflow (approxi-
mately)?: 3 hours

• How much time is needed to complete experiments (approxi-
mately)?: 9 hours without Metis, 15 hours with Metis

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License (MERCI)

• Data licenses (if publicly available)?: Creative Commons At-

tribution ShareAlike License (dblp), CC0: Public Domain License

(ani)

• Workflow framework used?: GAPBS

D.3 Description
D.3.1 How to access? The artifact code base can be downloaded

from https://github.com/Linestro/GRACE. A third-party code base

MERCI is needed and can be obtained by downloading from https:

//github.com/SNU-ARC/MERCI.git. The README file in the root

directory of GRACE repository contains instructions to download

open-source data sets and commands to reproduce Fig. 10.

D.3.2 Hardware dependencies: Any commodity CPU should be

adequate for running the code implementation.

D.3.3 Software dependencies: We use python 3.9 and g++ 9.4.0 on

Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-135-generic x86_64).

D.3.4 Datasets: We use real-world datasets for evaluation. The

datasets are obtained from the following links:

• DBLP: [link]

• AmazonSports: [link1] [link2]

• AmazonOffices: [link1] [link2]

• AmazonClothes: [link1] [link2]

• Anime: [link]

• Twitch: [link]

• Movie: [link]

• Steam: [link]

D.4 Installation
Download the GRACE code base from https://github.com/Linestro/

GRACE. In 𝐺𝑅𝐴𝐶𝐸/ folder, download the MERCI code base from

https://github.com/SNU-ARC/MERCI.git

D.5 Experiment Workflow
Due to the large number of commands, please refer to

GRACE/README.md for the commands for each step to run.

Step 1: Create necessary folders GRACE/ and GRACE/MERCI/.

298

https://github.com/Linestro/GRACE
https://github.com/SNU-ARC/MERCI.git
https://github.com/SNU-ARC/MERCI.git
https://nrvis.com/download/data/ca/ca-coauthors-dblp.zip
https://jmcauley.ucsd.edu/data/amazon_v2/categoryFiles/Sports_and_Outdoors.json.gz
https://jmcauley.ucsd.edu/data/amazon_v2/metaFiles2/meta_Sports_and_Outdoors.json.gz
https://jmcauley.ucsd.edu/data/amazon_v2/categoryFiles/Office_Products.json.gz
https://jmcauley.ucsd.edu/data/amazon_v2/metaFiles2/meta_Office_Products.json.gz
https://jmcauley.ucsd.edu/data/amazon_v2/categoryFiles/Clothing_Shoes_and_Jewelry.json.gz
https://jmcauley.ucsd.edu/data/amazon_v2/metaFiles2/meta_Clothing_Shoes_and_Jewelry.json.gz
https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database?resource=download
https://drive.google.com/drive/folders/1BD8m7a8m7onaifZay05yYjaLxyVV40si
https://files.grouplens.org/datasets/movielens/ml-20m.zip
https://drive.google.com/file/d/1pZxvHa3yLzIAE15TYDQI7G5qrI8rJab_/view
https://github.com/Linestro/GRACE
https://github.com/Linestro/GRACE
https://github.com/SNU-ARC/MERCI.git

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Step 2: Download and process datasets. (3 hours)

Step 3: Perform datasets cleaning. (10 minutes)

Step 4: Prepare mixed datasets. (2 hours)

Step 5: Generate ICG with training set. (3 hours)

Step 6: Reformat datasets into inference streaming set. (5 minutes)

Step 7:Reproducememory access count for GRACE,MERCI, SPACE.

(1 hour)

Step 8: (Optional) Reproduce memory access count for Metis. (3

hours)

Step 9: Reproduce Fig. 10 in the paper using the memory access

count collected in steps 7 and 8.

D.6 Evaluation and Expected Results
After the runs have completed running, the raw results are in

hbm_only_grace_log/, hbm_only_merci_log/,
hbm_only_space_log/, and hbm_only_metis_log/.
The reproduced Fig. 10 is in Fig10_plot/, and it should be close to
the Fig. 10 in the paper; a small error (< ±5%) accepted because each
time the training-testing set split (by default 50:50) is randomized.

REFERENCES
[1] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and

Prashant J Nair. 2021. Accelerating recommendation system training by leverag-

ing popular choices. arXiv preprint arXiv:2103.00686 (2021).
[2] My anime list. 2016. Anime recommendations database. https://www.kaggle.

com/CooperUnion/anime-recommendations-database.

[3] SNU Architecture and Code Optimization (ARC) Lab. 2021. MERCI Code Reposi-

tory. https://github.com/SNU-ARC/MERCI.

[4] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu Lim, and

Hyesoon Kim. 2021. FAFNIR: Accelerating Sparse Gathering by Using Efficient

Near-Memory Intelligent Reduction. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 908–920. https://doi.org/10.

1109/HPCA51647.2021.00080

[5] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen

Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,

and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigating

front-end stalls in warehouse-scale computers. In Proceedings of the 46th Interna-
tional Symposium on Computer Architecture. 462–473.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark

Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619 http://arxiv.org/abs/1508.

03619

[7] Erik Brynjolfsson, Yu Hu, and Duncan Simester. 2011. Goodbye pareto principle,

hello long tail: The effect of search costs on the concentration of product sales.

Management Science 57, 8 (2011), 1373–1386.
[8] Ümit V Çatalyürek and Cevdet Aykanat. 2011. Patoh (partitioning tool for

hypergraphs). In Encyclopedia of parallel computing. Springer, 1479–1487.
[9] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy

Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-

Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,

Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale

acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
onMicroarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783710

[10] Mauro Cerasoli and Aniello Fedullo. 2002. The inclusion-exclusion principle.

Journal of Interdisciplinary Mathematics 5, 2 (2002), 127–141.
[11] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO: Auto-

matic feedback-directed optimization for warehouse-scale applications. In 2016
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 12–23.

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,

Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A

Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.

58

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan

Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.

2016. Wide & Deep Learning for Recommender Systems. CoRR abs/1606.07792

(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792

[14] Hyeonseong Choi and Jaehwan Lee. 2021. Efficient Use of GPU Memory for

Large-Scale Deep Learning Model Training. Applied Sciences 11, 21 (2021), 10377.
[15] Chiachen Chou, Aamer Jaleel, andMoinuddin KQureshi. 2015. BEAR: Techniques

for mitigating bandwidth bloat in gigascale DRAM caches. ACM SIGARCH
Computer Architecture News 43, 3S (2015), 198–210.

[16] Chia Chen Chou, Aamer Jaleel, and Moinuddin K Qureshi. 2014. Cameo: A

two-level memory organization with capacity of main memory and flexibility of

hardware-managed cache. In 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 1–12.

[17] Marshall Choy. [n. d.]. Accelerating the Modern Machine Learning Workhorse:

Recommendation Inference. https://sambanova.ai/blog/accelerating-the-

modern-ml-workhorse-recommendation-inference/

[18] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks

for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[19] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey

Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018. Bandana: Us-

ing non-volatile memory for storing deep learning models. arXiv preprint
arXiv:1811.05922 (2018).

[20] AA Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou.

2021. Mixed dimension embeddings with application to memory-efficient recom-

mendation systems. In 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2786–2791.

[21] Carlos A Gomez-Uribe and Neil Hunt. 2015. The netflix recommender system:

Algorithms, business value, and innovation. ACM Transactions on Management
Information Systems (TMIS) 6, 4 (2015), 1–19.

[22] Asela Gunawardana and Guy Shani. 2015. Evaluating recommender systems. In

Recommender systems handbook. Springer, 265–308.
[23] Cong Guo, Yangjie Zhou, Jingwen Leng, Yuhao Zhu, Zidong Du, Quan Chen,

Chao Li, Bin Yao, and Minyi Guo. 2020. Balancing efficiency and flexibility

for DNN acceleration via temporal GPU-systolic array integration. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[24] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-

YeonWei, Hsien-Hsin S Lee, David Brooks, and Carole-JeanWu. 2020. Deeprecsys:

A system for optimizing end-to-end at-scale neural recommendation inference.

In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 982–995.

[25] Udit Gupta, Samuel Hsia, Jeff Jun Zhang, Mark Wilkening, Javin Pombra, Hsien-

Hsin S. Lee, Gu-Yeon Wei, Carole-Jean Wu, and David Brooks. 2021. RecPipe:

Co-designingModels andHardware to Jointly Optimize Recommendation Quality

and Performance. CoRR abs/2105.08820 (2021). arXiv:2105.08820 https://arxiv.

org/abs/2105.08820

[26] Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen,

David Brooks, Bradford Cottel, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee,

Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and

Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based

Personalized Recommendation. CoRR abs/1906.03109 (2019). arXiv:1906.03109

http://arxiv.org/abs/1906.03109

[27] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[28] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro

Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,

Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and

Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter

Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.

2018.00059

[29] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[30] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020. Centaur: A

chiplet-based, hybrid sparse-dense accelerator for personalized recommendations.

In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 968–981.

[31] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B. Preußer, Kai Zeng, Liang

Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, and

Gustavo Alonso. 2020. MicroRec: Accelerating Deep Recommendation Systems

to Microseconds by Hardware and Data Structure Solutions. CoRR abs/2010.05894

(2020). arXiv:2010.05894 https://arxiv.org/abs/2010.05894

[32] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.

2020. A Unified Architecture for Accelerating Distributed {DNN} Training in
Heterogeneous GPU/CPU Clusters. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 463–479.

[33] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

299

https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://github.com/SNU-ARC/MERCI
https://doi.org/10.1109/HPCA51647.2021.00080
https://doi.org/10.1109/HPCA51647.2021.00080
https://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://arxiv.org/abs/1606.07792
http://arxiv.org/abs/1606.07792
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference/
https://sambanova.ai/blog/accelerating-the-modern-ml-workhorse-recommendation-inference/
https://arxiv.org/abs/2105.08820
https://arxiv.org/abs/2105.08820
https://arxiv.org/abs/2105.08820
https://arxiv.org/abs/1906.03109
http://arxiv.org/abs/1906.03109
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://arxiv.org/abs/2010.05894
https://arxiv.org/abs/2010.05894

GRACE: A Scalable Graph-Based Approach to Accelerating Recommendation Model Inference ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

William Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,

GordonMacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagara-

jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps, Jonathan Ross, Amir Salek, Emad Samadiani,

Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,

Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,

Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.

2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. CoRR
abs/1704.04760 (2017). arXiv:1704.04760 http://arxiv.org/abs/1704.04760

[34] Hongju Kal, Seokmin Lee, Gun Ko, and Won Woo Ro. 2021. SPACE: Locality-

Aware Processing in Heterogeneous Memory for Personalized Recommendations.

In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 679–691.

[35] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,

Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-

scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[36] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[37] Liu Ke, Udit Gupta, Mark Hempstead, Carole-Jean Wu, Hsien-Hsin S Lee, and

Xuan Zhang. 2022. Hercules: Heterogeneity-Aware Inference Serving for At-Scale

Personalized Recommendation. arXiv preprint arXiv:2203.07424 (2022).
[38] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead,

Brandon Reagen, Xuan Zhang, David M. Brooks, Vikas Chandra, Utku Diril, Amin

Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Ma-

her, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy,

and XiaodongWang. 2019. RecNMP: Accelerating Personalized Recommendation

with Near-Memory Processing. CoRR abs/1912.12953 (2019). arXiv:1912.12953

http://arxiv.org/abs/1912.12953

[39] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-

jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,

Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-guided BTB prefetching for

data center applications. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture. 816–829.

[40] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner

Litz, and Baris Kasikci. 2020. I-spy: Context-driven conditional instruction

prefetching with coalescing. In 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). IEEE, 146–159.

[41] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles

Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-guided instruction

cache replacement for data center applications. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 734–747.

[42] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A fast and exten-

sible DRAM simulator. IEEE Computer architecture letters 15, 1 (2015), 45–49.
[43] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A practical

near-memory processing architecture for embeddings and tensor operations

in deep learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 740–753.

[44] Youngeun Kwon, Yunjae Lee, andMinsoo Rhu. 2021. Tensor casting: Co-designing

algorithm-architecture for personalized recommendation training. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 235–248.

[45] Youngeun Kwon and Minsoo Rhu. 2022. Training personalized recommenda-

tion systems from (GPU) scratch: look forward not backwards. arXiv preprint
arXiv:2205.04702 (2022).

[46] Dominique LaSalle and George Karypis. 2016. A parallel hill-climbing refinement

algorithm for graph partitioning. In 2016 45th International Conference on Parallel
Processing (ICPP). IEEE, 236–241.

[47] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher: inter-

procedural basic block layout optimization. In Proceedings of the 28th International
Conference on Compiler Construction. 65–75.

[48] Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, JaeW Lee,

and Tae Jun Ham. 2021. MERCI: efficient embedding reduction on commodity

hardware via sub-querymemoization. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 302–313.

[49] Bingchao Li, Choungki Song, Jizeng Wei, Jung Ho Ahn, and Nam Sung Kim. 2016.

Exploring new features of high-bandwidth memory for GPUs. IEICE Electronics
Express (2016), 13–20160527.

[50] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. 2022. CRISP: critical

slice prefetching. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 300–
313.

[51] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier

Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. Pudiannao: A

polyvalent machine learning accelerator. ACM SIGARCH Computer Architecture
News 43, 1 (2015), 369–381.

[52] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-

Jean Wu, and Mark Hempstead. 2021. Understanding capacity-driven scale-out

neural recommendation inference. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 162–171.

[53] Micron. 2015. DDR4 SDRAM Data sheet, MT40A2G4, MT40A1G8,

MT40A512M16. https://www.micron.com/-/media/client/global/documents/

products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf

[54] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,

Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean

Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-

avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-

dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang

Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model

for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).

arXiv:1906.00091 http://arxiv.org/abs/1906.00091

[55] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya

Agrawal, Stephen W Keckler, and William J Dally. 2017. Fine-grained DRAM:

Energy-efficient DRAM for extreme bandwidth systems. In 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 41–54.

[56] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt:

a practical binary optimizer for data centers and beyond. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 2–
14.

[57] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu, and

Jung Ho Ahn. 2021. TRiM: Enhancing Processor-Memory Interfaces with Scal-

able Tensor Reduction in Memory. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 268–281.

https://doi.org/10.1145/3466752.3480080

[58] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender

systems and how to leverage it. In Proceedings of the 2008 ACM conference on
Recommender systems. 11–18.

[59] Apurva Pathak, Kshitiz Gupta, and Julian McAuley. 2017. Generating and person-

alizing bundle recommendations on steam. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1073–1076.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[61] Jérémie Rappaz, Julian McAuley, and Karl Aberer. 2021. Recommendation on

Live-Streaming Platforms: Dynamic Availability and Repeat Consumption. In

Fifteenth ACM Conference on Recommender Systems. 390–399.
[62] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with in-

teractive graph analytics and visualization. In Twenty-ninth AAAI conference on
artificial intelligence.

[63] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and

Carole-Jean Wu. 2022. RecShard: Statistical Feature-Based Memory Optimization

for Industry-Scale Neural Recommendation. arXiv preprint arXiv:2201.10095
(2022).

[64] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. 2020.

Compositional embeddings using complementary partitions for memory-efficient

recommendation systems. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 165–175.

[65] Jaewoong Sim, Alaa R Alameldeen, Zeshan Chishti, Chris Wilkerson, and Hye-

soon Kim. 2014. Transparent hardware management of stacked dram as part of

memory. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE, 13–24.

[66] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019. Softsku:

Optimizing server architectures for microservice diversity@ scale. In Proceedings
of the 46th International Symposium on Computer Architecture. 513–526.

[67] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue.

2021. RM-SSD: In-Storage Computing for Large-Scale Recommendation Inference.

In 28th IEEE International Symposium on High-Performance Computer Architecture
(HPCA 2022).

[68] Idan Szpektor, Aristides Gionis, and Yoelle Maarek. 2011. Improving recommen-

dation for long-tail queries via templates. In Proceedings of the 20th international
conference on World wide web. 47–56.

[69] Nishil Talati, Ameer Haj Ali, Rotem Ben Hur, Nimrod Wald, Ronny Ronen, Pierre-

Emmanuel Gaillardon, and Shahar Kvatinsky. 2018. Practical challenges in de-

livering the promises of real processing-in-memory machines. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1628–1633.

[70] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. 2016. Logic

design within memristive memories using memristor-aided loGIC (MAGIC). IEEE

300

https://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1912.12953
http://arxiv.org/abs/1912.12953
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
https://doi.org/10.1145/3466752.3480080

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada H. Ye, S. Vedula, Y. Chen, Y. Yang, A. Bronstein, R. Dreslinski, T. Mudge, and N. Talati

Transactions on Nanotechnology 15, 4 (2016), 635–650.

[71] Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic

behavior chains. In Proceedings of the 12th ACM conference on recommender
systems. 86–94.

[72] Ruoxi Wang, Bin Fu, G. Fu, and Mingliang Wang. 2017. Deep & Cross Network

for Ad Click Predictions. Proceedings of the ADKDD’17 (2017).

[73] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,

David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data processing for solid

state drive based recommendation inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 717–729.

[74] Haojie Ye, Sanketh Vedula, Yuhan Chen, Yichen Yang, Alex Bronstein, Trevor

Mudge, Ronald Dreslinski, and Nishil Talati. 2023. Artifact of "GRACE: A Scal-

able Graph-Based Approach To Accelerating Recommendation Model Inference".

Zenodo. https://doi.org/10.5281/zenodo.7699872

[75] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the

long tail recommendation. arXiv preprint arXiv:1205.6700 (2012).
[76] Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan

Wei, Yuchen Hao, Michael Tsang, Wenjun Wang, et al. 2022. DHEN: A Deep and

Hierarchical Ensemble Network for Large-Scale Click-Through Rate Prediction.

arXiv preprint arXiv:2203.11014 (2022).
[77] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,

and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive

scale deep learning ads systems. Proceedings of Machine Learning and Systems 2
(2020), 412–428.

[78] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui

Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through

rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1059–1068.

Received 2022-10-20; accepted 2023-01-19

301

https://doi.org/10.5281/zenodo.7699872

	Abstract
	1 Introduction
	2 Background
	2.1 Personalized Recommendation Models
	2.2 DLRM Inference with GPU Support
	2.3 Exploiting Popular Choices in DLRMs

	3 Understanding the Challenges in Accelerating DLRM Inference
	3.1 Growing Data Sizes and Demands
	3.2 Limitations of Prior Works
	3.3 Challenges in Scalable System Design

	4 GRACE Algorithmic Framework
	4.1 Design Goals
	4.2 Algorithm Details
	4.3 A Walk-Through Example
	4.4 Overhead Analysis

	5 GRACE System Design
	5.1 Usage Model
	5.2 Heterogeneity Awareness
	5.3 Address Generation
	5.4 End-To-End System Design

	6 Methodology
	6.1 Real-World Datasets
	6.2 System Configuration
	6.3 State-of-the-Art Baselines

	7 Evaluation Results
	7.1 Performance Analysis
	7.2 Sensitivity Analysis
	7.3 Additional Results

	8 Related Work
	9 Conclusion
	10 Data Availability Statement
	A Appendix: Additional Algorithms
	A.1 ICG Construction Algorithm
	A.2 Address Generation Algorithm
	A.3 Multiple Embedding Table Support

	B Appendix: Additional Results
	B.1 Performance Analysis: MERCI Variants
	B.2 Energy Consumption Analysis
	B.3 Sensitivity Analysis
	B.4 Optimal Algorithmic Parameter Search

	C Appendix: Decision Engine Design For Predicting Optimal Parameter Setting
	D Artifact Appendix
	D.1 Abstract
	D.2 Artifact Check-List (Meta-Information)
	D.3 Description
	D.4 Installation
	D.5 Experiment Workflow
	D.6 Evaluation and Expected Results

	References

