Relevant publications

Yaniv Nemcovsky

Y. Nemcovsky, M. Jacoby, A. M. Bronstein, C. Baskin, Physical passive patch adversarial attacks on visual odometry systems, Proc. ACCV, 2022 details

Physical passive patch adversarial attacks on visual odometry systems

Y. Nemcovsky, M. Jacoby, A. M. Bronstein, C. Baskin
Proc. ACCV, 2022

Deep neural networks are known to be susceptible to adversarial perturbations — small perturbations that alter the output of the network and exist under strict norm limitations. While such perturbations are usually discussed as tailored to a specific input, a universal perturbation can be constructed to alter the model’s output on a set of inputs. Universal perturbations present a more realistic case of adversarial attacks, as awareness of the model’s exact input is not required. In addition, the universal attack setting raises the subject of generalization to unseen data, where given a set of inputs, the universal perturbations aim to alter the model’s output on out-of-sample data. In this work, we study physical passive patch adversarial attacks on visual odometry-based autonomous navigation systems. A visual odometry system aims to infer the relative camera motion between two corresponding viewpoints, and is frequently used by vision-based autonomous navigation systems to estimate their state. For such navigation systems, a patch adversarial perturbation poses a severe security issue, as it can be used to mislead a system onto some collision course. To the best of our knowledge, we show for the first time that the error margin of a visual odometry model can be significantly increased by deploying patch adversarial attacks in the scene. We provide evaluation on synthetic closed-loop drone navigation data and demonstrate that a comparable vulnerability exists in real data.

E. Zheltonozhskii, C. Baskin, Y. Nemcovsky, B. Chmiel, A. Mendelson, A. M. Bronstein, Colored noise injection for training adversarially robust neural networks, arXiv:2003.02188, 2020 details

Colored noise injection for training adversarially robust neural networks

E. Zheltonozhskii, C. Baskin, Y. Nemcovsky, B. Chmiel, A. Mendelson, A. M. Bronstein
arXiv:2003.02188, 2020
Picture for Colored noise injection for training adversarially robust neural networks

Even though deep learning have shown unmatched performance on various tasks, neural networks has been shown to be vulnerable to small adversarial perturbation of the input which lead to significant performance degradation. In this work we extend the idea of adding independent Gaussian noise to weights and activation during adversarial training (PNI) to injection of colored noise for defense against common white-box and black-box attacks. We show that our approach outperforms PNI and various previous approaches in terms of adversarial accuracy on CIFAR-10 dataset. In addition, we provide an extensive ablation study of the proposed method justifying the chosen configurations.

Y. Nemcovsky, E. Zheltonozhskii, C. Baskin, B. Chmiel, A. M. Bronstein, A. Mendelson, Smoothed inference for adversarially-trained models, arXiv: 1911.07198, 2019 details

Smoothed inference for adversarially-trained models

Y. Nemcovsky, E. Zheltonozhskii, C. Baskin, B. Chmiel, A. M. Bronstein, A. Mendelson
arXiv: 1911.07198, 2019

Deep neural networks are known to be vulnerable to inputs with maliciously constructed adversarial perturbations aimed at forcing misclassification. We study randomized smoothing as a way to both improve performance on unperturbed data as well as increase robustness to adversarial attacks. Moreover, we extend the method proposed by arXiv:1811.09310 by adding low-rank multivariate noise, which we then use as a base model for smoothing. The proposed method achieves 58.5% top-1 accuracy on CIFAR-10 under PGD attack and outperforms previous works by 4%. In addition, we consider a family of attacks, which were previously used for training purposes in the certified robustness scheme. We demonstrate that the proposed attacks are more effective than PGD against both smoothed and non-smoothed models. Since our method is based on sampling, it lends itself well for trading-off between the model inference complexity and its performance. A reference implementation of the proposed techniques is provided.