Publications

Topics:
  1. A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi, Optimal nonlinear line-of-flight estimation in positron emission tomography, IEEE Trans. on Nuclear Science, Vol. 50(3), 2003 details

    Optimal nonlinear line-of-flight estimation in positron emission tomography

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi
    IEEE Trans. on Nuclear Science, Vol. 50(3), 2003

    We consider detection of high-energy photons in PET using thick scintillation crystals. Parallax effect and multiple Compton interactions such crystals significantly reduce the accuracy of conventional detection methods. In order to estimate the photon line of flight based on photomultiplier responses, we use asymptotically optimal nonlinear techniques, implemented by feedforward and radial basis function (RBF) neural networks. Incorporation of information about angles of incidence of photons significantly improves the accuracy of estimation. The proposed estimators are fast enough to perform detection, using conventional computers. Monte-Carlo simulation results show that our approach significantly outperforms the conventional Anger algorithm.

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi, Separation of semireflective layers using Sparse ICA, Proc. Int'l Conf. on Acoustics Speech and Signal Processing (ICASSP), 2003 details

    Separation of semireflective layers using Sparse ICA

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi
    Proc. Int'l Conf. on Acoustics Speech and Signal Processing (ICASSP), 2003

    We address the problem of Blind Source Separation (BSS) of superimposed images and, in particular, consider the recovery of a scene recorded through a semi-refective medium (e.g. glass windshield) from its mixture with a virtual reflected image. We extend the Sparse ICA (SPICA) approach to BSS and apply it to the separation of the desired image from the superimposed images, without having any a priori knowledge about its structure and/or statistics. Advances in the SPICA approach are discussed. Simulations and experimental results illustrate the efficiency of the proposed approach, and of its specific implementation in a simple algorithm of a low computational cost. The approach and the algorithm are generic in that they can be adapted and applied to a wide range of BSS problems involving one-dimensional signals or images.

    A. M. Bronstein, M. M. Bronstein, R. Kimmel, Expression-invariant 3D face recognition, Proc. Audio- and Video-based Biometric Person Authentication (AVBPA), Lecture Notes in Comp. Science No. 2688, Springer, 2003 details

    Expression-invariant 3D face recognition

    A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Proc. Audio- and Video-based Biometric Person Authentication (AVBPA), Lecture Notes in Comp. Science No. 2688, Springer, 2003

    We present a novel 3D face recognition approach based on geometric invariants introduced by Elad and Kimmel. The key idea of the proposed algorithm is a representation of the facial surface, invariant to isometric deformations, such as those resulting from different expressions and postures of the face. The obtained geometric invariants allow mapping 2D facial texture images into special images that incorporate the 3D geometry of the face. These signature images are then decomposed into their principal components. The result is an efficient and accurate face recognition algorithm that is robust to facial expressions. We demonstrate the results of our method and compare it to existing 2D and 3D face recognition algorithms.