Publications

Topics:
  1. A. M. Bronstein, M. M. Bronstein, R. Kimmel, Three-dimensional face recognition, Int'l Journal of Computer Vision (IJCV), Vol. 64(1), 2005 details

    Three-dimensional face recognition

    A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Int'l Journal of Computer Vision (IJCV), Vol. 64(1), 2005

    An expression-invariant 3D face recognition approach is presented. Our basic assumption is that facial expressions can be modeled as isometries of the facial surface. This allows to construct expression-invariant representations of faces using the canonical forms approach. The result is an efficient and accurate face recognition algorithm, robust to facial expressions that can distinguish between identical twins (the first two authors). We demonstrate a prototype system based on the proposed algorithm and compare its performance to classical face recognition methods. The numerical methods employed by our approach do not require the facial surface explicitly. The surface gradients field, or the surface metric, are sufficient for constructing the expression-invariant representation of any given face. It allows us to perform the 3D face recognition task while avoiding the surface reconstruction stage.

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Quasi maximum likelihood blind deconvolution: super- an sub-Gaussianity versus consistency, IEEE Trans. Signal Processing, Vol. 53(7), 2005 details

    Quasi maximum likelihood blind deconvolution: super- an sub-Gaussianity versus consistency

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky
    IEEE Trans. Signal Processing, Vol. 53(7), 2005

    In this note we consider the problem of MIMO quasi maximum likelihood (QML) blind deconvolution. We examine two classes of estimators, which are commonly believed to be suitable for super- and sub-Gaussian sources. We state the consistency conditions and demonstrate a distribution, for which the studied estimators are unsuitable, in the sense that they are asymptotically unstable

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Relative optimization for blind deconvolution, IEEE Trans. on Signal Processing, Vol. 53(6), 2005 details

    Relative optimization for blind deconvolution

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky
    IEEE Trans. on Signal Processing, Vol. 53(6), 2005

    We propose a relative optimization framework for quasi-maximum likelihood (QML) blind deconvolution and the relative Newton method as its particular instance. The special Hessian structure allows fast Newton system construction and solution, resulting in a fast-convergent algorithm with iteration complexity comparable to that of gradient methods. We also propose the use of rational IIR restoration kernels, which constitute a richer family of filters than the traditionally used FIR kernels. We discuss different choices of non-linear functions suitable for deconvolution of super- and sub-Gaussian sources and formulate the conditions, under which the QML estimation is stable. Simulation results demonstrate the efficiency of the proposed methods.

    M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi, Blind deconvolution of images using optimal sparse representations, IEEE Trans. on Image Processing, Vol. 14(6), 2005 details

    Blind deconvolution of images using optimal sparse representations

    M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi
    IEEE Trans. on Image Processing, Vol. 14(6), 2005

    The relative Newton algorithm, previously proposed for quasi-maximum likelihood blind source separation and blind deconvolution of one-dimensional signals is generalized for blind deconvolution of images. Smooth approximation of the absolute value is used in modeling the log probability density function, which is suitable for sparse sources. In addition, we propose a method of sparsification, which allows blind deconvolution of sources with arbitrary distribution, and show how to find optimal sparsifying transformations by training.

    A. M. Bronstein, M. M. Bronstein, R. Kimmel, Expression-invariant face recognition via spherical embedding, Proc. Int'l Conf. on Image Processing (ICIP), 2005 details

    Expression-invariant face recognition via spherical embedding

    A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Proc. Int'l Conf. on Image Processing (ICIP), 2005

    Recently, it was proven empirically that facial expressions can be modeled as isometries, that is, geodesic distances on the facial surface were shown to be significantly less sensitive to facial expressions compared to Euclidean ones. Based on this assumption, the 3DFACE face recognition system was built. The system efficiently computes expression invariant signatures based on an isometry-invariant representation of the facial surface. One of the crucial steps in the recognition system was embedding of the face geometric structure into a Euclidean (flat) space. Here, we propose to replace the flat embedding by a spherical one to construct isometric invariant representations of the facial image. We refer to these new invariants as spherical canonical images. Compared to its Euclidean counterpart, spherical embedding leads to notably smaller metric distortion. We demonstrate experimentally that representations with lower embedding error lead to better recognition. In order to efficiently compute the invariants, we introduce a dissimilarity measure between the spherical canonical images based on the spherical harmonic transform.

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi, Unmixing tissues: sparse component analysis in multi-contrast MRI, Proc. Int'l Conf. on Image Processing (ICIP), 2005 details

    Unmixing tissues: sparse component analysis in multi-contrast MRI

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi
    Proc. Int'l Conf. on Image Processing (ICIP), 2005

    We pose the problem of tissue classification in MRI as a blind source separation (BSS) problem and solve it by means of sparse component analysis (SCA). Assuming that most MR images can be sparsely represented, we consider their optimal sparse representation. Sparse components define a physically-meaningful feature space for classification. We demonstrate our approach on simulated and real multi-contrast MRI data. The proposed framework is general in that it is applicable to other modalities of medical imaging as well, whenever the linear mixing model is applicable.

    A. M. Bronstein, M. M. Bronstein, R. Kimmel, Isometric embedding of facial surfaces into S^3, Proc. Int'l Conf. on Scale Space and PDE Methods in Computer Vision (SSVM), 2005 details

    Isometric embedding of facial surfaces into S^3

    A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Proc. Int'l Conf. on Scale Space and PDE Methods in Computer Vision (SSVM), 2005

    The problem of isometry-invariant representation and comparison of surfaces is of cardinal importance in pattern recognition applications dealing with deformable objects. Particularly, in three-dimensional face recognition treating facial expressions as isometries of the facial surface allows to perform robust recognition insensitive to expressions. Isometry-invariant representation of surfaces can be constructed by isometrically embedding them into some convenient space, and carrying out the comparison in that space. Presented here is a discussion on isometric embedding into S3, which appears to be superior over the previously used Euclidean space in sense of the representation accuracy.

    M. M. Bronstein, A. M. Bronstein, R. Kimmel, I. Yavneh, A multigrid approach for multi-dimensional scaling, Proc. Copper Mountain Conf. Multigrid Methods, 2005 (Best Paper Award) details

    A multigrid approach for multi-dimensional scaling

    M. M. Bronstein, A. M. Bronstein, R. Kimmel, I. Yavneh
    Proc. Copper Mountain Conf. Multigrid Methods, 2005 (Best Paper Award)

    A multigrid approach for the efficient solution of large-scale multidimensional scaling (MDS) problems is presented. The main motivation is a recent application of MDS to isometry-invariant representation of surfaces, in particular, for expression-invariant recognition of human faces. Simulation results show that the proposed approach significantly outperforms conventional MDS algorithms.

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi, Sparse ICA for blind separation of transmitted and reflected images, Int'l Journal of Imaging Science and Technology (IJIST), Vol. 15(1), 2005 details

    Sparse ICA for blind separation of transmitted and reflected images

    A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, Y. Y. Zeevi
    Int'l Journal of Imaging Science and Technology (IJIST), Vol. 15(1), 2005

    We address the problem of recovering a scene recorded through a semi-reflecting medium (i.e. planar lens), with a virtual reflected image being superimposed on the image of the scene transmitted through the semi-reflective lens. Recent studies propose imaging through a linear polarizer at several orientations to estimate the reflected and the transmitted components in the scene. In this stud,y we extend the sparse ICA (SPICA) technique and apply it to the problem of separating the image of the scene without having any a priori knowledge about its structure or statistics. Recent novel advances in the SPICA approach are discussed. Simulation and experimental results demonstrate the efficacy of the proposed methods.