Publications

Topics:
  1. O. Rubinstein, Y. Honen, A. M. Bronstein, M. M. Bronstein, R. Kimmel, 3D color video camera, Proc. Workshop on 3D Digital Imaging and Modeling (3DIM), 2009 details

    3D color video camera

    O. Rubinstein, Y. Honen, A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Proc. Workshop on 3D Digital Imaging and Modeling (3DIM), 2009

    We introduce a design of a coded light-based 3D color video camera optimized for build up cost as well as accuracy in depth reconstruction and acquisition speed. The components of the system include a monochromatic camera and an off-the-shelf LED projector synchronized by a miniature circuit. The projected patterns are captured and processed at a rate of 200 fps and allow for real-time reconstruction of both depth and color at video rates. The reconstruction and display are performed at around 30 depth profiles and color texture per second using a graphics processing unit (GPU).

    M. Ovsjanikov, A. M. Bronstein, M. M. Bronstein, L. Guibas, ShapeGoogle: a computer vision approach for invariant shape retrieval, Proc. Workshop on Nonrigid Shape Analysis and Deformable Image Alignment (NORDIA), 2009 details

    ShapeGoogle: a computer vision approach for invariant shape retrieval

    M. Ovsjanikov, A. M. Bronstein, M. M. Bronstein, L. Guibas
    Proc. Workshop on Nonrigid Shape Analysis and Deformable Image Alignment (NORDIA), 2009

    Feature-based methods have recently gained popularity in computer vision and pattern recognition communities, in applications such as object recognition and image retrieval. In this paper, we explore analogous approaches in the 3D world applied to the problem of non-rigid shape search and retrieval in large databases.

    Y. Devir, G. Rosman, A. M. Bronstein, M. M. Bronstein, R. Kimmel, On reconstruction of non-rigid shapes with intrinsic regularization, Proc. Workshop on Nonrigid Shape Analysis and Deformable Image Alignment (NORDIA), 2009 details

    On reconstruction of non-rigid shapes with intrinsic regularization

    Y. Devir, G. Rosman, A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Proc. Workshop on Nonrigid Shape Analysis and Deformable Image Alignment (NORDIA), 2009

    Shape-from-X is a generic type of inverse problems in computer vision, in which a shape is reconstructed from some measurements. A specially challenging setting of this problem is the case in which the reconstructed shapes are non-rigid. In this paper, we propose a framework for intrinsic regularization of such problems. The assumption is that we have the geometric structure of a shape which is intrinsically (up to bending) similar to the one we would like to reconstruct. For that goal, we formulate a variation with respect to vertex coordinates of a triangulated mesh approximating the continuous shape. The numerical core of the proposed method is based on differentiating the fast marching update step for geodesic distance computation.

    A. M. Bronstein, M. M. Bronstein, R. Kimmel, Topology-invariant similarity of nonrigid shapes, Int'l Journal of Computer Vision (IJCV), Vol. 81(3), 2009 details

    Topology-invariant similarity of nonrigid shapes

    A. M. Bronstein, M. M. Bronstein, R. Kimmel
    Int'l Journal of Computer Vision (IJCV), Vol. 81(3), 2009

    This paper explores the problem of similarity criteria between nonrigid shapes. Broadly speaking, such criteria are divided into intrinsic and extrinsic, the first referring to the metric structure of the object and the latter to how it is laid out in the Euclidean space. Both criteria have their advantages and disadvantages: extrinsic similarity is sensitive to nonrigid deformations, while intrinsic similarity is sensitive to topological noise. In this paper, we approach the problem from the perspective of metric geometry. We show that by unifying the extrinsic and intrinsic similarity criteria, it is possible to obtain a stronger topology-invariant similarity, suitable for comparing deformed shapes with different topology. We construct this new joint criterion as a tradeoff between the extrinsic and intrinsic similarity and use it as a set-valued distance. Numerical results demonstrate the efficiency of our approach in cases where using either extrinsic or intrinsic criteria alone would fail.

    A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, R. Kimmel, Partial similarity of objects, or how to compare a centaur to a horse, Int'l Journal of Computer Vision (IJCV), Vol. 84(2), 2009 details

    Partial similarity of objects, or how to compare a centaur to a horse

    A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, R. Kimmel
    Int'l Journal of Computer Vision (IJCV), Vol. 84(2), 2009

    Similarity is one of the most important abstract concepts in human perception of the world. In computer vision, numerous applications deal with comparing objects observed in a scene with some a priori known patterns. Often, it happens that while two objects are not similar, they have large similar parts, that is, they are partially similar. Here, we present a novel approach to quantify partial similarity using the notion of Pareto optimality. We exemplify our approach on the problems of recognizing non-rigid geometric objects, images, and analyzing text sequences.

    A. M. Bronstein, M. M. Bronstein, Y. Carmon, R. Kimmel, Partial similarity of shapes using a statistical significance measure, IPSJ Trans. Computer Vision and Application, Vol. 1, 2009 details

    Partial similarity of shapes using a statistical significance measure

    A. M. Bronstein, M. M. Bronstein, Y. Carmon, R. Kimmel
    IPSJ Trans. Computer Vision and Application, Vol. 1, 2009

    Partial matching of geometric structures is important in computer vision, pattern recognition and shape analysis applications. The problem consists of matching similar parts of shapes that may be dissimilar as a whole. Recently, it was proposed to consider partial similarity as a multi-criterion optimization problem trying to simultaneously maximize the similarity and the significance of the matching parts. A major challenge in that framework is providing a quantitative measure of the significance of a part of an object. Here, we define the significance of a part of a shape by its discriminative power with respect do a given shape database—that is, the uniqueness of the part. We define a point-wise significance density using a statistical weighting approach similar to the term frequency-inverse document frequency (tfidf) weighting employed in search engines. The significance measure of a given part is obtained by integrating over this density. Numerical experiments show that the proposed approach produces intuitive significant parts, and demonstrate an improvement in the performance of partial matching between shapes.